ImageAI是一个python库,旨在使开发人员能够使用简单的几行代码构建具有包含深度学习和计算机视觉功能的应用程序和系统。 这个 AI Commons 项目https://commons.specpal.science 由 Moses Olafenwa 和 John Olafenwa 开发和维护。为了更好的使用 ImageAI,我将其 Fork 到 CodeXZone/ImageAI。同时,ImageAI 也提供了中文手册:imageai。下面我将借助该教程一步一步的学习目标检测。

利用 cocoz 载入 COCO 数据集

首先,利用 cocoz 载入 COCOZ:

import sys
# 将 cocoapi 添加进入环境变量
sys.path.append(r'D:\API\cocoapi\PythonAPI')
from pycocotools.cocoz import AnnZ, ImageZ, COCOZ
# ------------------ import numpy as np
from matplotlib import pyplot as plt
from IPython import display def use_svg_display():
# 用矢量图显示, 效果更好
display.set_matplotlib_formats('svg') def show_imgs(imgs, k=4):
'''
展示 多张图片
'''
n = len(imgs)
h, w = k, n // k
assert n == h * w, "图片数量不匹配"
use_svg_display()
_, ax = plt.subplots(h, w, figsize=(5, 5)) # 设置图的尺寸
K = np.arange(n).reshape((h, w))
for i in range(h):
for j in range(w):
img = imgs[K[i, j]]
ax[i][j].imshow(img)
ax[i][j].axes.get_yaxis().set_visible(False)
ax[i][j].set_xticks([])
plt.show()
dataDir = r'E:\Data\coco\images'   # COCO 数据根目录
dataType = 'train2017'
imgZ = ImageZ(dataDir, dataType) show_imgs(imgZ[300:316])

物体检测,提取和微调

import sys
sys.path.append('D:/API/ImageAI') from imageai.Detection import ObjectDetection
import os execution_path = os.getcwd() detector = ObjectDetection() # 创建目标检测实例
detector.setModelTypeAsRetinaNet()
detector.setModelPath(
os.path.join(execution_path, "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel() # 载入预训练模型

由于 detector.detectObjectsFromImage 比较容易支持解压后的图片,所以我们可以提取出一张图片来做测试:

input_image = imgZ.Z.extract(imgZ.names[0]) # 输入文件的路径
output_image = os.path.join(execution_path, "image2new.jpg") # 输出文件的路径 detections = detector.detectObjectsFromImage(
input_image=input_image, output_image_path=output_image) for eachObject in detections:
print(eachObject["name"] + " : ", eachObject["percentage_probability"])
print("--------------------------------")
motorcycle :  99.99607801437378
--------------------------------

detectObjectsFromImage() 函数返回一个字典列表,每个字典包含图像中检测到的对象信息,字典中的对象信息有 name(对象类名)和 percentage_probability(概率)以及 box_points(图片的左上角与右下角的坐标)。

detections
[{'name': 'motorcycle',
'percentage_probability': 99.99607801437378,
'box_points': array([ 34, 92, 546, 427])}]

下面我们看看其标注框:

img = plt.imread(output_image)
plt.imshow(img)
plt.show()

为了直接使用压缩文件,我们可以修改 detectObjectsFromImage 的默认参数 input_type='file'input_type='array'

input_image = imgZ[202]  # 输入文件的路径
output_image = os.path.join(execution_path, "image2.jpg") # 输出文件的路径 detections = detector.detectObjectsFromImage(
input_image=input_image, output_image_path=output_image, input_type='array') for eachObject in detections:
print(eachObject["name"] + " : ", eachObject["percentage_probability"])
print("--------------------------------") img = plt.imread(output_image)
plt.imshow(img)
plt.show()
tennis racket :  54.25310730934143
--------------------------------
person : 99.85058307647705
--------------------------------

detections, objects_path = detector.detectObjectsFromImage(
input_image=imgZ[900], input_type = 'array',
output_image_path=os.path.join(execution_path, "image3new.jpg"),
extract_detected_objects=True) for eachObject, eachObjectPath in zip(detections, objects_path):
print(eachObject["name"] + " : ", eachObject["percentage_probability"])
print("Object's image saved in ", eachObjectPath)
print("--------------------------------")
person :  56.35678172111511
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-1.jpg
--------------------------------
person : 75.83483457565308
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-2.jpg
--------------------------------
person : 60.49004793167114
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-3.jpg
--------------------------------
person : 85.2730393409729
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-4.jpg
--------------------------------
person : 83.12703967094421
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\person-5.jpg
--------------------------------
bus : 99.7751772403717
Object's image saved in D:\API\CVX\draft\image3new.jpg-objects\bus-6.jpg
--------------------------------

extract_detected_objects=True 将会把检测到的对象提取并保存为单独的图像;这将使函数返回 2 个值,第一个是字典数组,每个字典对应一个检测到的对象信息,第二个是所有提取出对象的图像保存路径,并且它们按照对象在第一个数组中的顺序排列。我们先看看原图:

plt.imshow(imgZ[900])
plt.show()

显示识别出来的对象:

show_imgs([plt.imread(fname) for fname in objects_path], 2)

还有一个十分重要的参数 minimum_percentage_probability 用于设定预测概率的阈值,其默认值为 50(范围在 \(0-100\)之间)。如果保持默认值,这意味着只有当百分比概率大于等于 50 时,该函数才会返回检测到的对象。使用默认值可以确保检测结果的完整性,但是在检测过程中可能会跳过许多对象。下面我们看看修改后的效果:

detections = detector.detectObjectsFromImage(
input_image=imgZ[900],
input_type='array',
output_image_path=os.path.join(execution_path, "image3new.jpg"),
minimum_percentage_probability=70) for eachObject in detections:
print(eachObject["name"] + " : ", eachObject["percentage_probability"])
print("--------------------------------")
person :  75.83483457565308
--------------------------------
person : 85.2730393409729
--------------------------------
person : 83.12703967094421
--------------------------------
bus : 99.7751772403717
--------------------------------

我们将 minimum_percentage_probability 设置为 70,此时仅仅只能检测到 4 个。

利用 ImageAI 在 COCO 上学习目标检测的更多相关文章

  1. GPU上创建目标检测Pipeline管道

    GPU上创建目标检测Pipeline管道 Creating an Object Detection Pipeline for GPUs 今年3月早些时候,展示了retinanet示例,这是一个开源示例 ...

  2. 论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey

    目录 写在前面 目标检测任务与挑战 目标检测方法汇总 基础子问题 基于DCNN的特征表示 主干网络(network backbone) Methods For Improving Object Rep ...

  3. zz深度学习目标检测2014至201901综述

    论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey  发表于 2019-02-14 |  更新 ...

  4. 深度学习 目标检测算法 SSD 论文简介

    深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf  Slides:http://w ...

  5. (转)深度学习目标检测指标mAP

    深度学习目标检测指标mAP https://github.com/rafaelpadilla/Object-Detection-Metrics 参考上面github链接中的readme,有详细描述

  6. 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN

    参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...

  7. 深度学习目标检测综述推荐之 Xiaogang Wang ISBA 2015

    一.INTRODUCTION部分 (1)先根据时间轴讲了历史 (2)常见的基础模型 (3)讲了深度学习的优势 那就是feature learning,而不用人工划分的feature engineeri ...

  8. 深度学习目标检测:RCNN,Fast,Faster,YOLO,SSD比较

    转载出处:http://blog.csdn.net/ikerpeng/article/details/54316814 知乎的图可以放大,更清晰,链接:https://www.zhihu.com/qu ...

  9. 深度学习与CV教程(12) | 目标检测 (两阶段,R-CNN系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

随机推荐

  1. springboot配置文件的配置

    转:https://www.cnblogs.com/zheting/p/6707036.html Spring Boot使用了一个全局的配置文件application.properties,放在src ...

  2. Python基础【day01】:PyChram使用技巧总结(六)

    本节内容 1.添加或者修改文件模板 2. python版本管理切换 3.已有文件重命名4.Python模块安装5.在PyChram中直接浏览文件目录6. 断点调试7.常用快捷键8.PyChram设置字 ...

  3. python操作txt文件中数据教程[2]-python提取txt文件

    python操作txt文件中数据教程[2]-python提取txt文件中的行列元素 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原始txt文件 程序实现后结果-将txt中元素提取并保存在c ...

  4. webpack:代码分割与按需加载

    代码分割就是我们根据实际业务需求将代码进行分割,然后在合适的时候在将其加载进入文档中. 代码中总有些东西我们希望拆分开来,比如: 使用概率较低的模块,希望后期使用的时候异步加载 框架代码,希望能利用浏 ...

  5. Extending Markov to Hidden Markov

    Extending Markov to Hidden Markov a tutorial on hidden markov models, Hidden Markov Models, hidden m ...

  6. JMS学习(二)之ActiveMQ

    1,ActiveMQ是Apache实现的基于JMS的一个消息服务器.下面记录ActiveMQ的一些基本知识. 2,ActiveMQ connectors:ActiveMQ providesconnec ...

  7. ASP.NET MVC学习(三)之过滤器Filter

    http://www.cnblogs.com/yaopengfei/p/7910763.html

  8. Javascript摸拟自由落体与上抛运动 说明!

    JavaScript 代码 //**************************************** //名称:Javascript摸拟自由落体与上抛运动! //作者:Gloot //邮箱 ...

  9. Linux - awk 文本处理工具三

    AWK 文件打印匹配 格式示例 awk '/Tom/' file # 打印匹配到得行 awk '/^Tom/{print $1}' # 匹配Tom开头的行 打印第一个字段 awk '$1 !~ /ly ...

  10. Codeforces 237 div2 B. Marathon(关于精度损失的教训)

    题目链接:http://codeforces.com/contest/404/problem/B?csrf_token=6292hf3e1h4g5e0d16a996ge6bgcg7g2 解题报告:一个 ...