题解

具体就是列一个未知数方程\(dp[i]\)表示有\(i\)滴血的时候期望多少轮

\(dp[i] = 1 + \sum_{j = 1}^{i + 1} a_{i,j}dp[j]\)

\(dp[n] = 1 + \sum_{j = 1}^{n} a_{i,j}dp[j]\)

\(a_{i,j}\)表示从\(i\)滴血到\(j\)滴血的概率

可以高斯消元?

但是发现这个似乎和递推形式只差一点点

\(a_{i,i + 1} dp[i + 1] = -1 - \sum_{j = 1}^{i - 1} a_{i,j}dp[j] + (1 - a_{i,i})dp[i]\)

但是我们不知道\(dp[1]\)

我们可以把\(dp[1]\)设成\(X\),然后用前\(n - 1\)个式子推出来\(dp[n] = A_1x + B_1\)

用第\(n\)个式子再推出来\(dp[n] = A_2x + B_2\)就可以解出来\(x\)了

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 20005
#define eps 1e-8
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int C[1505],N,M,P,K;
pii dp[1505];
int g[1505],f[1505],d[1505],inv[1505],ad[1505];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
const pii operator + (const pii &a,const pii &b) {
return mp(inc(a.fi,b.fi),inc(a.se,b.se));
}
const pii operator * (const pii &a,const int &d) {
return mp(mul(a.fi,d),mul(a.se,d));
}
void update(pii &a,pii b) {
a = a + b;
}
void Solve() {
read(N);read(P);read(M);read(K);
if(K == 0) {puts("-1");return;}
if(M == 0) {
if(K == 1) {
puts("-1");
}
else {
int cnt = 0;
if(P == N) {P = max(0,P - K);++cnt;}
if(P) cnt += (P - 1) / (K - 1) + 1;
out(cnt);enter;
}
return;
} int T = min(N,K);
int InvM = fpow(M,MOD - 2),InvM1 = fpow(M + 1,MOD - 2);
C[0] = 1;C[1] = K;
g[0] = 1;f[0] = fpow(mul(InvM1,M),K);int t = mul(InvM,M + 1);
g[1] = InvM1,f[1] = mul(f[0],t);
for(int i = 2 ; i <= T ; ++i) {
C[i] = mul(C[i - 1],mul(inv[i],inc(K,MOD - i + 1)));
g[i] = mul(g[i - 1],g[1]);
f[i] = mul(f[i - 1],t);
}
for(int i = 0 ; i <= T ; ++i) {
t = mul(C[i],mul(g[i],f[i]));
d[i] = mul(t,mul(M,InvM1));
ad[i] = mul(t,InvM1);
}
for(int i = T + 1 ; i <= N ; ++i) d[i] = ad[i] = 0;
dp[1] = mp(1,0);
for(int i = 2 ; i <= N ; ++i) {
dp[i] = mp(0,MOD - 1);
update(dp[i],dp[i - 1] * inc(1,MOD - inc(d[0],ad[1])));
for(int j = 1 ; j < i - 1; ++j) {
update(dp[i],dp[j] * (MOD - inc(d[i - 1 - j],ad[i - j])));
}
dp[i] = dp[i] * fpow(ad[0],MOD - 2);
}
pii another = mp(0,1);
for(int i = 1 ; i < N ; ++i) {
if(N - i <= T) {
t = mul(C[N - i],mul(g[N - i],f[N - i]));
update(another,dp[i] * t);
}
}
another = another * fpow(inc(1,MOD - f[0]),MOD - 2);
if(another.fi == dp[N].fi) {puts("-1");return;}
int x = mul(inc(dp[N].se,MOD - another.se),fpow(inc(another.fi,MOD - dp[N].fi),MOD - 2));
out(inc(mul(dp[P].fi,x),dp[P].se));enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
inv[1] = 1;
for(int i = 2 ; i <= 1500 ; ++i) {
inv[i] = mul(inv[MOD % i],MOD - MOD / i);
}
int T;read(T);
while(T--) Solve();
return 0;
}

【LOJ】#2513. 「BJOI2018」治疗之雨的更多相关文章

  1. 「BJOI2018」治疗之雨

    传送门 Description 有\(m+1\)个数,第一个数为\(p\),每轮:选一个数\(+1\),再依次选\(k\)个数\(-1\) 要求如果第一个数\(=N\),不能选它\(+1\),如果第一 ...

  2. 【LOJ2513】「BJOI2018」治疗之雨

    题意 你现在有 \(m+1\) 个数:第一个为 \(p\) ,最小值为 \(0\) ,最大值为 \(n\) :剩下 \(m\) 个都是无穷,没有最小值或最大值.你可以进行任意多轮操作,每轮操作如下: ...

  3. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  4. 「BJOI2018」链上二次求和

    「BJOI2018」链上二次求和 https://loj.ac/problem/2512 我说今天上午写博客吧.怕自己写一上午,就决定先写道题. 然后我就调了一上午线段树. 花了2h找到lazy标记没 ...

  5. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  6. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  7. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  8. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  9. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

随机推荐

  1. 【刷题】LOJ 6002 「网络流 24 题」最小路径覆盖

    题目描述 给定有向图 \(G = (V, E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 \(P\) 的一条路上,则称 \(P\) 是 ...

  2. PowerDesigner 打印错误

    PowerDesigner打开pdm文件时报“打印错误”(解决)   原创作品,出自 “深蓝的blog” 博客,欢迎转载,转载时请务必注明出处,否则追究版权法律责任. 深蓝的blog:http://b ...

  3. Chapter 9 (排序)

    1.排序算法: //****************************Sort.h******************************************** #ifndef SOR ...

  4. for循环遍历数组(数组1)

    package com.mon10.day24; import java.util.Scanner; /** * 类说明 :计算学生的总成绩和平均分 * @author 作者 : chenyanlon ...

  5. Java URL

    1.在网络编程的时候,一定不要忘记 <uses-permission android:name="android.permission.INTERNET"></u ...

  6. springSecurity入门小demo--配置文件xml的方式

    本例子只是一个最最最简单的入门demo,重点讲解xml的配置参数的意思和遇到的坑,主要的功能有: 自定义登录页面,错误页面 配置角色 csrf-403报错解决方法(加上一行代码配置就ok) 后台ifr ...

  7. CSS Counter Style试玩儿

    2015年2月3日,CSS Counter Style level3成为了W3C的候选标准,是时候来一探究竟,看看强大魔力的@counter-style如何自定义list-style和counter. ...

  8. css 基础1

    css 层叠样式表 css手册 样式写在head 中间 style标签 css 样式规则: 选择器 {属性:属性值:属性:属性值} 字体样式属性:font-size 字号大小 color 字体颜色 f ...

  9. Markdown 详细语法

    << 访问 Wow!Ubuntu NOTE: This is Simplelified Chinese Edition Document of Markdown Syntax. If yo ...

  10. [iOS]深拷贝/浅拷贝区别

    来点鸡汤: // 所谓拷贝 就是在原有的对象的基础上产生一个新的副本对象.有两点原则: //   1. 改变原对象的属性和行为不会影响副本对象 //   2. 改变副本对象的属性和行为不会影响原对象 ...