题解

具体就是列一个未知数方程\(dp[i]\)表示有\(i\)滴血的时候期望多少轮

\(dp[i] = 1 + \sum_{j = 1}^{i + 1} a_{i,j}dp[j]\)

\(dp[n] = 1 + \sum_{j = 1}^{n} a_{i,j}dp[j]\)

\(a_{i,j}\)表示从\(i\)滴血到\(j\)滴血的概率

可以高斯消元?

但是发现这个似乎和递推形式只差一点点

\(a_{i,i + 1} dp[i + 1] = -1 - \sum_{j = 1}^{i - 1} a_{i,j}dp[j] + (1 - a_{i,i})dp[i]\)

但是我们不知道\(dp[1]\)

我们可以把\(dp[1]\)设成\(X\),然后用前\(n - 1\)个式子推出来\(dp[n] = A_1x + B_1\)

用第\(n\)个式子再推出来\(dp[n] = A_2x + B_2\)就可以解出来\(x\)了

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 20005
#define eps 1e-8
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int C[1505],N,M,P,K;
pii dp[1505];
int g[1505],f[1505],d[1505],inv[1505],ad[1505];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
const pii operator + (const pii &a,const pii &b) {
return mp(inc(a.fi,b.fi),inc(a.se,b.se));
}
const pii operator * (const pii &a,const int &d) {
return mp(mul(a.fi,d),mul(a.se,d));
}
void update(pii &a,pii b) {
a = a + b;
}
void Solve() {
read(N);read(P);read(M);read(K);
if(K == 0) {puts("-1");return;}
if(M == 0) {
if(K == 1) {
puts("-1");
}
else {
int cnt = 0;
if(P == N) {P = max(0,P - K);++cnt;}
if(P) cnt += (P - 1) / (K - 1) + 1;
out(cnt);enter;
}
return;
} int T = min(N,K);
int InvM = fpow(M,MOD - 2),InvM1 = fpow(M + 1,MOD - 2);
C[0] = 1;C[1] = K;
g[0] = 1;f[0] = fpow(mul(InvM1,M),K);int t = mul(InvM,M + 1);
g[1] = InvM1,f[1] = mul(f[0],t);
for(int i = 2 ; i <= T ; ++i) {
C[i] = mul(C[i - 1],mul(inv[i],inc(K,MOD - i + 1)));
g[i] = mul(g[i - 1],g[1]);
f[i] = mul(f[i - 1],t);
}
for(int i = 0 ; i <= T ; ++i) {
t = mul(C[i],mul(g[i],f[i]));
d[i] = mul(t,mul(M,InvM1));
ad[i] = mul(t,InvM1);
}
for(int i = T + 1 ; i <= N ; ++i) d[i] = ad[i] = 0;
dp[1] = mp(1,0);
for(int i = 2 ; i <= N ; ++i) {
dp[i] = mp(0,MOD - 1);
update(dp[i],dp[i - 1] * inc(1,MOD - inc(d[0],ad[1])));
for(int j = 1 ; j < i - 1; ++j) {
update(dp[i],dp[j] * (MOD - inc(d[i - 1 - j],ad[i - j])));
}
dp[i] = dp[i] * fpow(ad[0],MOD - 2);
}
pii another = mp(0,1);
for(int i = 1 ; i < N ; ++i) {
if(N - i <= T) {
t = mul(C[N - i],mul(g[N - i],f[N - i]));
update(another,dp[i] * t);
}
}
another = another * fpow(inc(1,MOD - f[0]),MOD - 2);
if(another.fi == dp[N].fi) {puts("-1");return;}
int x = mul(inc(dp[N].se,MOD - another.se),fpow(inc(another.fi,MOD - dp[N].fi),MOD - 2));
out(inc(mul(dp[P].fi,x),dp[P].se));enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
inv[1] = 1;
for(int i = 2 ; i <= 1500 ; ++i) {
inv[i] = mul(inv[MOD % i],MOD - MOD / i);
}
int T;read(T);
while(T--) Solve();
return 0;
}

【LOJ】#2513. 「BJOI2018」治疗之雨的更多相关文章

  1. 「BJOI2018」治疗之雨

    传送门 Description 有\(m+1\)个数,第一个数为\(p\),每轮:选一个数\(+1\),再依次选\(k\)个数\(-1\) 要求如果第一个数\(=N\),不能选它\(+1\),如果第一 ...

  2. 【LOJ2513】「BJOI2018」治疗之雨

    题意 你现在有 \(m+1\) 个数:第一个为 \(p\) ,最小值为 \(0\) ,最大值为 \(n\) :剩下 \(m\) 个都是无穷,没有最小值或最大值.你可以进行任意多轮操作,每轮操作如下: ...

  3. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  4. 「BJOI2018」链上二次求和

    「BJOI2018」链上二次求和 https://loj.ac/problem/2512 我说今天上午写博客吧.怕自己写一上午,就决定先写道题. 然后我就调了一上午线段树. 花了2h找到lazy标记没 ...

  5. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  6. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  7. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  8. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  9. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

随机推荐

  1. 解题:SHOI 2014 概率充电器

    题面 显然就是在求概率,因为期望乘的全是1....然后就推推推啊 设$fgg[i]$表示这个点父亲没给他充上电的概率,$sgg[i]$表示这个点子树(和它自己)没给他充上电的概率,然后这个点没充上电的 ...

  2. 解决小米note5 安装了google play store 打不开的问题

    打不开的原因是缺少了google play store 运行的一些后台程序 去豌豆荚下载如下谷歌安装器(注:安装器有很多种,我试了如下这种成功) 重启手机,google play store 即可正常 ...

  3. Flink入门训练--以New York City Taxi为例

    最近在学Flink,准备用Flink搭建一个实时的推荐系统.找到一个好的网站(也算作是flink创始者的官方网站),上面有关于Flink的上手教程,用来练练手,熟悉熟悉,下文仅仅是我的笔记. 1. 数 ...

  4. javamail插件发送不同类型邮件方式

    一.RFC882文档简单说明 RFC882文档规定了如何编写一封简单的邮件(纯文本邮件),一封简单的邮件包含邮件头和邮件体两个部分,邮件头和邮件体之间使用空行分隔. 邮件头包含的内容有: from字段 ...

  5. np.random.choice方法

    np.random.choice方法 觉得有用的话,欢迎一起讨论相互学习~Follow Me def choice(a, size=None, replace=True, p=None) 表示从a中随 ...

  6. pytho部分命令

    python --version查看版本号 pip install XXX 安装模块 pip uninstall XXX 卸载模块

  7. 解决linux mysql命令 bash: mysql: command not found 的方法

    错误: root@DB-02 ~]# mysql -u root-bash: mysql: command not found 原因:这是由于系统默认会查找/usr/bin下的命令,如果这个命令不在这 ...

  8. bzoj千题计划203:bzoj3994: [SDOI2015]约数个数和

    http://www.lydsy.com/JudgeOnline/problem.php?id=3994 设d(x)为x的约数个数,给定N.M,求 用到的一个结论: 证明: 枚举n的约数i,枚举m的约 ...

  9. javascript构造函数强制使用new

    如果有时候我们忘记对构造函数使用new的话,构造函数的this将指向window function Person(){ this.name = 'Julie'; } var good_moring = ...

  10. 20155328 2016-2017-2 《Java程序设计》 第8周学习总结

    20155328 2016-2017-2 <Java程序设计> 第8周学习总结 教材学习内容总结 NIO与NIO2 认识NIO 相对于IO,NIO可以让你设定缓冲区容量,在缓冲区中对感兴趣 ...