首先旋转坐标系,把每个点可以接收的范围转化成一个正方形。

然后建立k-d tree,并记录下每个点在k-d tree上的位置。

对询问使用莫队算法,修改$O(\log n)$,查询期望$O(\log n)$。

总复杂度$O(n\sqrt{n}\log n)$。

#include<cstdio>
#include<cmath>
#include<algorithm>
const int N=200010,M=10010;
int T,n,m,d,i,x,y,id[N],root,cmp_d,X1,X2,Y1,Y2,lim,l,r,k;
struct P{int x,y;}a[N];
struct Q{int l,r,id;}q[M];long long now,ans[M];
inline bool cmpq(const Q&a,const Q&b){return a.l/lim<b.l/lim||a.l/lim==b.l/lim&&a.r<b.r;}
struct node{int d[2],l,r,Max[2],Min[2],val,sum,f;}t[N];
inline bool cmp(const node&a,const node&b){return a.d[cmp_d]<b.d[cmp_d];}
inline void umax(int&a,int b){if(a<b)a=b;}
inline void umin(int&a,int b){if(a>b)a=b;}
inline void up(int x){
if(t[x].l){
umax(t[x].Max[0],t[t[x].l].Max[0]);
umin(t[x].Min[0],t[t[x].l].Min[0]);
umax(t[x].Max[1],t[t[x].l].Max[1]);
umin(t[x].Min[1],t[t[x].l].Min[1]);
}
if(t[x].r){
umax(t[x].Max[0],t[t[x].r].Max[0]);
umin(t[x].Min[0],t[t[x].r].Min[0]);
umax(t[x].Max[1],t[t[x].r].Max[1]);
umin(t[x].Min[1],t[t[x].r].Min[1]);
}
}
int build(int l,int r,int D,int f){
int mid=(l+r)>>1;
cmp_d=D,std::nth_element(t+l+1,t+mid+1,t+r+1,cmp);
id[t[mid].f]=mid;
t[mid].f=f;
t[mid].Max[0]=t[mid].Min[0]=t[mid].d[0];
t[mid].Max[1]=t[mid].Min[1]=t[mid].d[1];
t[mid].val=t[mid].sum=0;
if(l!=mid)t[mid].l=build(l,mid-1,!D,mid);else t[mid].l=0;
if(r!=mid)t[mid].r=build(mid+1,r,!D,mid);else t[mid].r=0;
return up(mid),mid;
}
inline void change(int x,int p){for(t[x].val+=p;x;x=t[x].f)t[x].sum+=p;}
void ask(int x){
if(t[x].Min[0]>X2||t[x].Max[0]<X1||t[x].Min[1]>Y2||t[x].Max[1]<Y1||!t[x].sum)return;
if(t[x].Min[0]>=X1&&t[x].Max[0]<=X2&&t[x].Min[1]>=Y1&&t[x].Max[1]<=Y2){k+=t[x].sum;return;}
if(t[x].d[0]>=X1&&t[x].d[0]<=X2&&t[x].d[1]>=Y1&&t[x].d[1]<=Y2)k+=t[x].val;
if(t[x].l)ask(t[x].l);
if(t[x].r)ask(t[x].r);
}
inline void add(int x){
X1=a[x].x-d,X2=a[x].x+d,Y1=a[x].y-d,Y2=a[x].y+d;
k=0,ask(root),now+=k;
change(id[x],1);
}
inline void del(int x){
change(id[x],-1);
X1=a[x].x-d,X2=a[x].x+d,Y1=a[x].y-d,Y2=a[x].y+d;
k=0,ask(root),now-=k;
}
int main(){
while(~scanf("%d%d%d",&n,&d,&m)){
printf("Case %d:\n",++T);
lim=(int)std::sqrt(n+0.5);
for(i=1;i<=n;i++){
scanf("%d%d",&x,&y);
t[i].d[0]=a[i].x=x+y,t[i].d[1]=a[i].y=x-y,t[i].f=i;
}
root=build(1,n,0,0);
for(i=1;i<=m;i++)scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i;
std::sort(q+1,q+m+1,cmpq);
for(i=l=1,r=now=0;i<=m;i++){
int L=q[i].l,R=q[i].r;
if(r<R){for(r++;r<=R;r++)add(r);r--;}
if(r>R)for(;r>R;r--)del(r);
if(l<L)for(;l<L;l++)del(l);
else if(l>L){for(l--;l>=L;l--)add(l);l++;}
ans[q[i].id]=now;
}
for(i=1;i<=m;i++)printf("%lld\n",ans[i]);
}
return 0;
}

  

BZOJ4255 : Keep Fit!的更多相关文章

  1. BZOJ4255:Keep Fit!

    浅谈\(K-D\) \(Tree\) 题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4255 莫队加\(kd\) \(tree\),直接 ...

  2. u-boot FIT image介绍_转自“蜗窝科技”

    转自:http://www.wowotech.net/u-boot/fit_image_overview.html 1. 前言 Linux kernel在ARM架构中引入设备树device tree( ...

  3. Modified Least Square Method and Ransan Method to Fit Circle from Data

    In OpenCv, it only provide the function fitEllipse to fit Ellipse, but doesn't provide function to f ...

  4. iOS Aspect Fit,Aspect Fill,Scale To Fill

    Scale:拉伸图片,图片变形. Aspect:图片长宽的保持比例,图片不变形. Aspect Fill(常用):图像充满容器.以长宽中小的参数为限制. Aspect Fit:图像在容器中完整显示.以 ...

  5. ExtJs布局之accordion,fit,auto

    <!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta http-equiv ...

  6. 利用AVL树实现搬箱问题的best fit策略

    //my.h //定义两个数据类型,货物Goods,箱子Box #include <vector> #include <cstddef> #include <iostre ...

  7. jQueryEasyUI中DataGrid的height,width,fit,fitColumns属性

    height: 600, //不指定则默认垂直包裹,指定了则固定 width:1200,//不指定则水平100%平铺,指定了则固定 fit:false,//true:高度填充父窗体,忽略height属 ...

  8. 60秒找到最对的size?为服饰电商提供尺寸匹配解决方案的True Fit获1500万美元融资 | 36氪

    60秒找到最对的size?为服饰电商提供尺寸匹配解决方案的True Fit获1500万美元融资 | 36氪 60秒找到最对的size?为服饰电商提供尺寸匹配解决方案的True Fit获1500万美元融 ...

  9. fitnesse 中各类fit fixture的python实现

    虽然网上都说slim效率很高,无奈找不到支持python的方法,继续用pyfit 1 Column Fixture 特点:行表格展现形式,一条测试用例对应一行数据 Wiki !define COMMA ...

随机推荐

  1. 官方资料&一些好的博客与技术点

    https://technet.microsoft.com/zh-cn/library/hh848794.aspxzh   https://msdn.microsoft.com/en-us/power ...

  2. Nginx学习总结

    2017年2月23日, 星期四 Nginx学习总结 Nginx是目前比较主流的HTTP反向代理服务器(其企业版提供了基于TCP层的反向代理插件),对于构建大型分布式web应用,具有举足轻重的作用.简单 ...

  3. UVALive 6176 Faulhaber's Triangle

    题目链接 http://acm.sdibt.edu.cn/vjudge/ojFiles/uvalive/pdf/61/6177.pdf 题意是  给定一个数n,代表着一共有n个人,且他们的身高从1到n ...

  4. scala笔记之惰性赋值(lazy)

    一.lazy关键字简介 lazy是scala中用来实现惰性赋值的关键字,被lazy修饰的变量初始化的时机是在第一次使用此变量的时候才会赋值,并且仅在第一次调用时计算值,即值只会被计算一次,赋值一次,再 ...

  5. Python3中的内置函数

    内置函数 我们一起来看看python里的内置函数.什么是内置函数?就是Python给你提供的,拿来直接用的函数,比如print,input等等.截止到python版本3.6.2,现在python一共为 ...

  6. c# 防止sql注入对拼接sql脚本的各个参数处理

    调用方法:GameServerId = this.NoHtml(GameServerId);//GameServerId为一个拼接sql的参数 /// <summary> /// 过滤标记 ...

  7. IL反编译的实用工具Ildasm.exe

    初识Ildasm.exe——IL反编译的实用工具    https://www.cnblogs.com/yangmingming/archive/2010/02/03/1662307.html   学 ...

  8. .Net Core连接RabbitMQ集群

    var connectionFactory = new ConnectionFactory() { //HostName = "192.168.205.128", 集群不在此处声明 ...

  9. Linux磁盘分区UUID的获取及其UUID的作用

    注:UUID-Universally Unique IDentifiers全局唯一标识符 一.Linux磁盘分区UUID的获取方法 1.[san@localhost ~]$ ls -l /dev/di ...

  10. 使用badblocks命令检测、修复硬盘坏道(待验证)

    今天我的新硬盘到了.暂时没想好怎么用它.可以把它装入光驱位硬盘架给G430用,也可以把它当成移动硬盘来用. 想起以前记录过一个badblocks的用法,用来检查坏道,这里再贴一遍备用. ####### ...