HDU3439 Sequence
今天下午学习了二项式反演,做了一道错排的题,开始了苦逼的经历。
显然答案是C(︀n,k)︀*H(n − k).
其中H(i)为长度为i的错排序列
然后经过课件上一番二项式反演的推导
我就写了个扩展卢卡斯然后交上去了。
一直t啊.....
我算了算复杂度差不多是O(T*P*log^3P)
后来剪了剪枝,应该低了点。
还是t啊.....
我搜了搜题解发现没有我这么写的。
看了一下错排是有规律的,果然还是打表大法吼啊。
发个正解
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll qmod(ll n,ll m,ll p)
{
ll ans=;
while(m)
{
if(m&)ans=ans*n%p;
n=n*n%p;m>>=;
}
return ans;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){
x=;y=;return;
}
exgcd(b,a%b,y,x);y-=a/b*x;
}
ll inv(ll n,ll p)
{
if(!n)return ;
ll a=n,b=p,x=,y=;
exgcd(a,b,x,y);
x=(x%b+b)%b;
if(!x)x+=b;
return x;
}
ll mul(ll n,ll pi,ll pk)
{
if(!n)return 1ll;
ll ans=;
if(n/pk)
{
for(ll i=;i<=pk;++i)
if(i%pi)ans=ans*i%pk;
ans=qmod(ans,n/pk,pk)%pk;
}
for(ll i=;i<=n%pk;++i)
if(i%pi)ans=ans*i%pk;
return ans*mul(n/pi,pi,pk)%pk;
}
int C(ll n,ll m,ll p,ll pi,ll pk)
{
if(m>n)return ;
ll a=mul(n,pi,pk),b=mul(m,pi,pk),c=mul(n-m,pi,pk);
ll k=,ans;
for(ll i=n;i;i/=pi)k+=i/pi;
for(ll i=m;i;i/=pi)k-=i/pi;
for(ll i=n-m;i;i/=pi)k-=i/pi;
ans=a*inv(b,pk)%pk*inv(c,pk)%pk*qmod(pi,k,pk)%pk;
return ans*(p/pk)%p*inv(p/pk,pk)%p;//CRT
}
bool v[];
int pp[],cnt;
void pri()
{
for(int i=;i<=;++i)
{
if(!v[i])
{
pp[++cnt]=i;
}
for(int j=;j<=cnt&&i*pp[j]<=;++j)
{
v[i*pp[j]]=;
if(i%pp[j]==)break;
}
}
}
ll calc(ll n,ll m,ll p)
{
ll ans=;
for(ll x=p,i=;i<=cnt&&x;++i)
{
if(x==)break;
if(x%pp[i]==)
{
ll num=;
while(x%pp[i]==)x/=pp[i],num*=pp[i];
ans=(ans+C(n,m,p,pp[i],num))%p;
}
}
return ans;
}
ll F(ll x,ll p)
{
ll ans=;
if(x==)return ;
x=x%(*p);
if(x==)x=*p;
for(int i=;i<=x;++i)
ans=(ans*i+(i%==?:-))%p;
return (ans+p)%p;
}
int main()
{
ll n,m,p,t,ans=;
scanf("%I64d",&t);pri();v[]=;
for(int ii=;ii<=t;++ii)
{
scanf("%I64d%I64d%I64d",&n,&m,&p);
ans=calc(n,m,p)%p;
ans=ans*F(n-m,p)%p;
printf("Case %d: %I64d\n",ii,ans);
}
return ;
}
再补个我的辣鸡程序,路过的dalao帮忙看看也中啊、
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll qmod(ll n,ll m,ll p)
{
ll ans=;
while(m)
{
if(m&)ans=ans*n%p;
n=n*n%p;m>>=;
}
return ans;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){
x=;y=;return;
}
exgcd(b,a%b,y,x);y-=a/b*x;
}
ll inv(ll n,ll p)
{
if(!n)return ;
ll a=n,b=p,x=,y=;
exgcd(a,b,x,y);
x=(x%b+b)%b;
if(!x)x+=b;
return x;
}
ll mul(ll n,ll pi,ll pk)
{
if(!n)return 1ll;
ll ans=;
if(n/pk)
{
for(ll i=;i<=pk;++i)
if(i%pi)ans=ans*i%pk;
ans=qmod(ans,n/pk,pk)%pk;
}
for(ll i=;i<=n%pk;++i)
if(i%pi)ans=ans*i%pk;
return ans*mul(n/pi,pi,pk)%pk;
}
int C(ll n,ll m,ll p,ll pi,ll pk)
{
if(m>n)return ;
ll a=mul(n,pi,pk),b=mul(m,pi,pk),c=mul(n-m,pi,pk);
ll k=,ans;
for(ll i=n;i;i/=pi)k+=i/pi;
for(ll i=m;i;i/=pi)k-=i/pi;
for(ll i=n-m;i;i/=pi)k-=i/pi;
ans=a*inv(b,pk)%pk*inv(c,pk)%pk*qmod(pi,k,pk)%pk;
return ans*(p/pk)%p*inv(p/pk,pk)%p;//CRT
}
bool v[];
int pp[],cnt;
void pri()
{
for(int i=;i<=;++i)
{
if(!v[i])
{
pp[++cnt]=i;
}
for(int j=;j<=cnt&&i*pp[j]<=;++j)
{
v[i*pp[j]]=;
if(i%pp[j]==)break;
}
}
}
ll calc(ll n,ll m,ll p)
{
ll ans=;
for(ll x=p,i=;i<=cnt&&x;++i)
{
if(x==)break;
if(x%pp[i]==)
{
ll num=;
while(x%pp[i]==)x/=pp[i],num*=pp[i];
ans=(ans+C(n,m,p,pp[i],num))%p;
}
}
return ans;
}
int main()
{
ll n,m,p,t,ans=;
scanf("%I64d",&t);pri();v[]=;
for(int ii=;ii<=t;++ii)
{
scanf("%I64d%I64d%I64d",&n,&m,&p);
ans=calc(n,m,p)%p;n-=m;ll pre=;ll num=,pos=max(0ll,n-p);
if(!ans)
{
printf("Case %d: %I64d\n",ii,pre*ans%p);continue;
}
for(ll k=n;k>=pos;--k)
{
if(n!=k)num=num*(n-k)%p;
if(k&1ll)pre=(pre-calc(n,k,p)%p*num%p+p)%p;
else pre=(pre+calc(n,k,p)%p*num%p)%p;
if(!num)break;
}
printf("Case %d: %I64d\n",ii,pre*ans%p);
}
return ;
}
好吧,蒟蒻苦逼的一下午。
同时纪念衡水人民224起义。
HDU3439 Sequence的更多相关文章
- [SPOJ SEQN] [hdu3439]Sequence
题目就是求C(n,k)*H(n - k)%m 0<= k<= n <=10^9, 1 <= m <= 10^5, n != 0 其中H(n)是错排第n项. 对于C(n,k ...
- oracle SEQUENCE 创建, 修改,删除
oracle创建序列化: CREATE SEQUENCE seq_itv_collection INCREMENT BY 1 -- 每次加几个 STA ...
- Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等
功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...
- DG gap sequence修复一例
环境:Oracle 11.2.0.4 DG 故障现象: 客户在备库告警日志中发现GAP sequence提示信息: Mon Nov 21 09:53:29 2016 Media Recovery Wa ...
- Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Sequence Reconstruction 序列重建
Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. Th ...
- [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列
Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...
- [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列
Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...
- [LeetCode] Longest Consecutive Sequence 求最长连续序列
Given an unsorted array of integers, find the length of the longest consecutive elements sequence. F ...
随机推荐
- Ubantu里面的Sublime Text3不支持中文的解决办法
参考的大佬链接:https://github.com/lyfeyaj/sublime-text-imfix 更新然后将系统升级到最新版本,在linux终端输入 sudo apt-get update ...
- AngularJS 启程二
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> </head> ...
- pandas 实现通达信里的MFI
pandas 实现通达信里的MFI 算法里的关键点: combine()和rolling().sum()方法 combine -- 综合运算, rolling().sum() -- 滚动求和 利用pd ...
- spm
Spatial Pyramid Matching 看了很多关于SPM的介绍,但是网络上的资源大多都是对论文Beyond bags of features: Spatial pyramid matchi ...
- Dream_Spark-----Spark 定制版:004~Spark Streaming事务处理彻底掌握
Spark 定制版:004~Spark Streaming事务处理彻底掌握 本讲内容: a. Exactly Once b. 输出不重复 注:本讲内容基于Spark 1.6.1版本(在2016年5月来 ...
- Linux内核源码分析--内核启动之(2)Image内核启动(汇编部分)(Linux-3.0 ARMv7) 【转】
转自:http://blog.chinaunix.net/uid-25909619-id-4938389.html 在完成了zImage自解压之后,就跳转到了解压后的内核(也就是vmlinux的bin ...
- Oracle SQL部分练习题
SQL练习题 注:查询列表不建议用 “*” 1.列出至少有一个雇员的所有部门: a. select * from dept where deptno in(select distinct ...
- jenkins的svn路径中文问题
今天弄Jenkins,我们的SVN代码路径是中文的,他娘的坑死我了,很没面子弄了俩点,网上方案试了好多,说装插件,修改Tomcat server.xml,基本没用,后来看到一个帖子写的方案蛮实用的,分 ...
- Android BLE设备蓝牙通信框架BluetoothKit
BluetoothKit是一款功能强大的Android蓝牙通信框架,支持低功耗蓝牙设备的连接通信.蓝牙广播扫描及Beacon解析. 关于该项目的详细文档请关注:https://github.com/d ...
- java adapter(适配器)惯用方法
如果现在有一个Iterable类,你想要添加一种或多种在foreach语句中使用这个类的方法,例如方向迭代,应该怎么做呢? 如果之间继承这个类,并且覆盖iterator()方法,你只能替换现有的方法, ...