【BZOJ 4059】 (分治暴力|扫描线+线段树)
4059: [Cerc2012]Non-boring sequences
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 632 Solved: 227Description
我们害怕把这道题题面搞得太无聊了,所以我们决定让这题超短。一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的数字,即每个子序列里至少存在一个数字只出现一次。给定一个整数序列,请你判断它是不是不无聊的。
Input
第一行一个正整数T,表示有T组数据。每组数据第一行一个正整数n,表示序列的长度,1 <= n <= 200000。接下来一行n个不超过10^9的非负整数,表示这个序列。
Output
对于每组数据输出一行,输出"non-boring"表示这个序列不无聊,输出"boring"表示这个序列无聊。
Sample Input
4
5
1 2 3 4 5
5
1 1 1 1 1
5
1 2 3 2 1
5
1 1 2 1 1Sample Output
non-boring
boring
non-boring
boringHINT
Source
【分析】
这题我是不会往扫描线方向想的。感觉很神奇。
首先对于每个a[i]求前一个同色的位置$last$和后一个的位置$next$,显然左端点在[last+1,i]右端点在[i,next-1]的都是可以的。
那么把左端点当成x,右端点当成y,区间就表示成了平面上的一个点,可行区间集就是一个矩形,最后看看n个矩形是否把上三角覆盖。
【这个把这题复杂化了,其实有更简单的方法所以我没打这个哦
很容易想到暴力。
如果序列non-boring,必定有一个数值只出现了一次,找到他的位置i【可能有多个,先随便找一个】,
那么区间跨越i的都可以的嘛,所以只需判断[l,i-1]和[i+1,r]即可。
就把区间分治了。
但是时间复杂度???
网上的神犇们说,从左右两端向中间暴力枚举,用$next$和$last$$O(1)$判断即可。
是nlogn的。
因为:$T(n)=max{T(k)+T(n-k)+min(n,n-k)}=O(nlogn)$
直观证明:
我们考虑每个对时间复杂度有贡献的下标,它一定属于两段中比较小的那一段,于是。。
每次每个下标被算一次,它的所在块就会缩小一倍,那么显然每个下标的贡献就是O(logn),它的总时间复杂度就是O(nlogn)。
ORZORZ。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 200010 struct node{int x,id;}t[Maxn];
bool cmp(node x,node y) {return x.x<y.x;}
int a[Maxn],nt[Maxn],lt[Maxn],ft[Maxn]; bool ffind(int l,int r)
{
if(l>=r) return ;
int t=-;
for(int i=;i<=r-l+;i++)
{
if(l+i>r-i) break;
if(nt[l+i]>r&<[l+i]<l) {t=l+i;break;}
if(nt[r-i]>r&<[r-i]<l) {t=r-i;break;}
}
if(t==-) return ;
return ffind(l,t-)&&ffind(t+,r);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&t[i].x);t[i].id=i;
}
sort(t+,t++n,cmp);
a[t[].id]=;int p=;
for(int i=;i<=n;i++)
{
if(t[i].x!=t[i-].x) p++;
a[t[i].id]=p;
}
for(int i=;i<=p;i++) ft[i]=n+;
for(int i=n;i>=;i--) nt[i]=ft[a[i]],ft[a[i]]=i;
for(int i=;i<=p;i++) ft[i]=;
for(int i=;i<=n;i++) lt[i]=ft[a[i]],ft[a[i]]=i;
if(ffind(,n)) printf("non-boring\n");
else printf("boring\n");
}
return ;
}
2017-04-25 08:38:03
【BZOJ 4059】 (分治暴力|扫描线+线段树)的更多相关文章
- HDU 3642 - Get The Treasury - [加强版扫描线+线段树]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- 【BZOJ3958】[WF2011]Mummy Madness 二分+扫描线+线段树
[BZOJ3958][WF2011]Mummy Madness Description 在2011年ACM-ICPC World Finals上的一次游览中,你碰到了一个埃及古墓. 不幸的是,你打开了 ...
- HDU 3265/POJ 3832 Posters(扫描线+线段树)(2009 Asia Ningbo Regional)
Description Ted has a new house with a huge window. In this big summer, Ted decides to decorate the ...
- 【bzoj4491】我也不知道题目名字是什么 离线扫描线+线段树
题目描述 给定一个序列A[i],每次询问l,r,求[l,r]内最长子串,使得该子串为不上升子串或不下降子串 输入 第一行n,表示A数组有多少元素接下来一行为n个整数A[i]接下来一个整数Q,表示询问数 ...
- hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积
题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...
- CodeForce 855B 暴力or线段树
CodeForce 855B 暴力or线段树 题意 给你一串数,然后找出三个数,他们的前后关系和原来一样,可以相同,然后分别乘p,q,r,求他们积的和最大,并且输出这个数. 解题思路 这个可以使用线段 ...
- [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)
[BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...
- [BZOJ 2653] middle(可持久化线段树+二分答案)
[BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...
- P3722 [AH2017/HNOI2017]影魔(单调栈+扫描线+线段树)
题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l ...
随机推荐
- Mac系统 MAMP 集成环境下搭建 Redis
之前由于嫌弃 mac 下命令行搭建 php+mysql 环境太复杂,给自己挖了一个大坑 就是偷懒使用了名为 MAMP 的一键集成安装包 好用是好用,但是等你需要添加点模块和功能的时候就傻眼了 这几天在 ...
- P3932 浮游大陆的68号岛
P3932 浮游大陆的68号岛 妖精仓库的储物点可以看做在一个数轴上.每一个储物点会有一些东西,同时他们之间存在距离. 每次他们会选出一个小妖精,然后剩下的人找到区间[l,r]储物点的所有东西,清点完 ...
- Scala进阶之路-Scala的基本语法
Scala进阶之路-Scala的基本语法 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.函数式编程初体验Spark-Shell之WordCount var arr=Array( ...
- 函数和常用模块【day06】:time模块 (一)
本节内容 1.简述 2.time模块 3.时间格式转换 一.简述 我们在写代码的过程经常遇到时间模块,如果我们以后需要根据时间去筛选信息的话,那用户会更大,所以今天就来讲讲时间的两大模块:time & ...
- redis添加systemctl服务
1.编辑systemctl服务配置文件 vim /lib/systemd/system/redis.service 2.内容如下 [Unit]Description=RedisAfter=networ ...
- POJ - 2513 Colored Sticks(欧拉通路+并查集+字典树)
https://vjudge.net/problem/POJ-2513 题解转载自:優YoU http://user.qzone.qq.com/289065406/blog/1304742541 题 ...
- Spring Cloud(十四)Config 配置中心与客户端的使用与详细
前言 在上一篇 文章 中我们直接用了本应在本文中配置的Config Server,对Config也有了一个基本的认识,即 Spring Cloud Config 是一种用来动态获取Git.SVN.本地 ...
- [转]CMake cache
CMakeCache.txt 可以将其想象成一个配置文件(在Unix环境下,我们可以认为它等价于传递给configure的参数). CMakeLists.txt 中通过 set(... CACHE . ...
- Linux输出重定向>和>>的区别是什么
[简介:>与>>的区别] 1 > 是定向输出到文件,如果文件不存在,就创建文件:如果文件存在,就将其清空:一般我们备份清理日志文件的时候,就是这种方法:先备份日志,再用`& ...
- 内存溢出(Memory Overflow)和内存泄露(Memory Leak)的区别
内存泄漏指你用malloc或new申请了一块内存,但是没有通过free或delete将内存释放,导致这块内存一直处于占用状态 内存溢出指你申请了10个字节的空间,但是你在这个空间写入11或以上字节的数 ...