之前一直用Python来写优化算法,为了增强 JS 的熟练程度,开始将原有的代码改写成 JS。采用的工具包括 node.js + Grunt + nodeunit + github + npm + travis-ci。

最初的版本采用过程式的方式实现,没有采用面向对象或事件驱动的模式。

#!/usr/bin/env node --harmony

// Random Search

"use strict";

var util = require("util");

function objective_function(v) {
return v.map(function(x) {
return x*x;
}).reduce(function(a, b) {
return a+b;
});
} function random_vector(min_max) {
return min_max.map(function(x) {
return x[0] + (x[1] - x[0]) * Math.random();
});
} function search(search_space, max_iteration) {
var best = {};
for (var iteration = 0; iteration < max_iteration; iteration++) {
var candidate = {
'vector': random_vector(search_space)
};
candidate['cost'] = objective_function(candidate['vector']);
//console.log(candidate);
if (iteration === 0 || candidate['cost'] < best['cost']) {
best = candidate;
}
console.log(' > iteration=' + (iteration+1) + ', best=' + best['cost']);
}
return best;
} function generate_array(element, repeat) {
return new Array(repeat+1).join(1).split('').map(function(){return element;});
} function run () {
var problem_size = 2;
var search_space = generate_array([-5, 5], problem_size);
var max_iteration = 100;
var best = search(search_space, max_iteration);
console.log("Done. Best Solution: " + util.inspect(best));
} exports.objective_function = objective_function;
exports.random_vector = random_vector;
exports.generate_array = generate_array;
exports.search = search;
exports.run = run;

  

调用方式很简单。

var rs = require('clever_algorithms_js').random_search;

rs.run();

单元测试:

var random_search = require('../../lib/stochastic/random_search');

exports['objective'] = function (test) {
test.equal(random_search.objective_function([1, 2]), 5);
test.done();
}; exports['random_vector'] = function (test) {
var rv = random_search.random_vector([[1, 2], [2, 3]]);
test.equal(rv.length, 2);
test.ok(1 <= rv[0] && rv[0] <= 2);
test.ok(2 <= rv[1] && rv[1] <= 3);
test.done();
}; exports['generate_array'] = function (test) {
var a = random_search.generate_array([-5, 5], 2);
test.equal(a.length, 2);
test.deepEqual(a, [[-5,5], [-5,5]]);
test.done();
}; exports['search'] = function (test) {
var problem_size = 2,
search_space = random_search.generate_array([-5, 5], problem_size),
max_iter = 100;
var best = random_search.search(search_space, max_iter);
test.notEqual(best, {});
test.ok(-5 <= best['cost'] && best['cost'] <= 5);
test.done();
};

如果采用CoffeeScript进行改写的话,代码会更简洁一些:

# Random Search

util = require("util");

objective_function = (v) ->
v.reduce (x,y) -> x*x + y*y random_vector = (min_max) ->
min_max.map (rx) -> rx[0] + (rx[1] - rx[0]) * Math.random() generate_array = (element, repeat) ->
(element for [1..repeat]) search = (search_space, max_iteration) ->
best = {}
for iteration in [0..max_iteration-1]
candidate = {
'vector': random_vector(search_space)
}
candidate['cost'] = objective_function(candidate['vector'])
best = candidate if iteration == 0 || candidate['cost'] < best['cost']
console.log ' > iteration=' + (iteration+1) + ' best=' + best['cost'];
best run = () ->
problem_size = 2
search_space = generate_array([-5, 5], problem_size)
max_iteration = 100
best = search(search_space, max_iteration)
console.log "Done. Best Solution: " + util.inspect(best);
return exports.objective_function = objective_function;
exports.random_vector = random_vector;
exports.generate_array = generate_array;
exports.search = search;
exports.run = run;

  

编译出的JavaScript代码,看起来是这个样子:

(function() {
var generate_array, objective_function, random_vector, run, search, util; util = require("util"); objective_function = function(v) {
return v.reduce(function(x, y) {
return x * x + y * y;
});
}; random_vector = function(min_max) {
return min_max.map(function(rx) {
return rx[0] + (rx[1] - rx[0]) * Math.random();
});
}; generate_array = function(element, repeat) {
var _i, _results;
_results = [];
for (_i = 1; 1 <= repeat ? _i <= repeat : _i >= repeat; 1 <= repeat ? _i++ : _i--) {
_results.push(element);
}
return _results;
}; search = function(search_space, max_iteration) {
var best, candidate, iteration, _i, _ref;
best = {};
for (iteration = _i = 0, _ref = max_iteration - 1; 0 <= _ref ? _i <= _ref : _i >= _ref; iteration = 0 <= _ref ? ++_i : --_i) {
candidate = {
'vector': random_vector(search_space)
};
candidate['cost'] = objective_function(candidate['vector']);
if (iteration === 0 || candidate['cost'] < best['cost']) {
best = candidate;
}
console.log(' > iteration=' + (iteration + 1) + ' best=' + best['cost']);
}
return best;
}; run = function() {
var best, max_iteration, problem_size, search_space;
problem_size = 2;
search_space = generate_array([-5, 5], problem_size);
max_iteration = 100;
best = search(search_space, max_iteration);
console.log("Done. Best Solution: " + util.inspect(best));
}; exports.objective_function = objective_function; exports.random_vector = random_vector; exports.generate_array = generate_array; exports.search = search; exports.run = run; }).call(this);

  

  

[1] https://www.npmjs.org/package/clever_algorithms_js

[2] https://github.com/fox000002/clever_algorithms_js

使用 JavaScript 编写优化算法 (1)的更多相关文章

  1. 使用Golang编写优化算法 (1)

    动手写点东西是学习新知识很重要的一个阶段.之前用 Python 和 JavaScript 实现优化算法,现在用 Golang 来实现.语法上略有不爽,某些C语言的思维又回来了. - Golang 用 ...

  2. JavaScript是如何工作的02:深入V8引擎&编写优化代码的5个技巧

    概述 JavaScript引擎是执行 JavaScript 代码的程序或解释器.JavaScript引擎可以实现为标准解释器,或者以某种形式将JavaScript编译为字节码的即时编译器. 以为实现J ...

  3. JavaScript工作机制:V8 引擎内部机制及如何编写优化代码的5个诀窍

    概述 JavaScript引擎是一个执行JavaScript代码的程序或解释器.JavaScript引擎可以被实现为标准解释器,或者实现为以某种形式将JavaScript编译为字节码的即时编译器. 下 ...

  4. JavaScript内存优化

    JavaScript内存优化 相对C/C++ 而言,我们所用的JavaScript 在内存这一方面的处理已经让我们在开发中更注重业务逻辑的编写.但是随着业务的不断复杂化,单页面应用.移动HTML5 应 ...

  5. 前端开发周报: CSS 布局方式方式与JavaScript数据结构和算法

    前端开发周报:CSS 布局方式与JavaScript动画库 1.常见 CSS 布局方式详见: 一些常见的 CSS 布局方式梳理,涉及 Flex 布局.Grid 布局.圣杯布局.双飞翼布局等.http: ...

  6. JavaScript性能优化篇js优化

    JavaScript性能优化篇js优化   随着Ajax越来越普遍,Ajax引用的规模越来越大,Javascript代码的性能越来越显得重要,我想这就是一个很典型的例子,上面那段代码因为会被频繁使用, ...

  7. javascript数据结构与算法---列表

    javascript数据结构与算法---列表 前言:在日常生活中,人们经常要使用列表,比如我们有时候要去购物时,为了购物时东西要买全,我们可以在去之前,列下要买的东西,这就要用的列表了,或者我们小时候 ...

  8. 摘:JavaScript性能优化小知识总结

    原文地址:http://www.codeceo.com/article/javascript-performance-tips.html JavaScript的性能问题不容小觑,这就需要我们开发人员在 ...

  9. artDialog是一个基于javascript编写的对话框组件,它拥有精致的界面与友好的接口

    artDialog是一个基于javascript编写的对话框组件,它拥有精致的界面与友好的接口 自适应内容 artDialog的特殊UI框架能够适应内容变化,甚至连外部程序动态插入的内容它仍然能自适应 ...

随机推荐

  1. C# 妈妈再打我一下生成器

    设计背景 网上很火的一个"妈妈再打我一下"的漫画图片,给了网友无限的想象发挥空间,此小程序可以给图片添加配文的形式,快速生成图片 设计思路 GDI+ 绘图技术,在图片基础上添加文字 ...

  2. oralce下载

    oracle的官网网址:oracle.com 打开之后选择中文 然后在页面的下方找到下载和试用链接 点击进入,选择数据库下载,在页面中找到如下部分点击进入即可下载对应版本的oracle

  3. [代码]--WinForm 窗体之间相互嵌套

    public FrmScan() { InitializeComponent(); Form1 frm = new Form1(); frm.Dock = DockStyle.Fill; frm.Fo ...

  4. 【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)

    [BZOJ1093][ZJOI2007]最大半联通子图(Tarjan,动态规划) 题面 BZOJ 洛谷 洛谷的讨论里面有一个好看得多的题面 题解 显然强连通分量对于题目是没有任何影响的,直接缩点就好了 ...

  5. BZOJ 2865 字符串识别 | 后缀数组 线段树

    集训讲字符串的时候我唯一想出正解的题-- 链接 BZOJ 2865 题面 给出一个长度为n (n <= 5e5) 的字符串,对于每一位,求包含该位的.最短的.在原串中只出现过一次的子串. 题解 ...

  6. 【转】SPI总线协议

    SPI总线协议 By Xiaomin | April 17, 2016| 技术 概述 SPI(Serial Peripheral Interface)总线是主要应用于嵌入式系统内部通信的串行同步传输总 ...

  7. asp.net连接数据库超时的解决办法

    错误提示:“超时时间已到.超时时间已到,但是尚未从池中获取连接.出现这种情况可能是因为所有池连接均在使用,并且达到了最大池大小.  ” 经过几天辛苦写的代码,终于实现了功能丰富的查询功能,但是使用的过 ...

  8. Java基础-SSM之Spring快速入门篇

    Java基础-SSM之Spring快速入门篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.    Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java ...

  9. CentOS6.8下安装Nginx-1.9.15

    1. 简介 Nginx是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP代理服务器. Nginx是一款轻量级的Web服务器/反向代理服务器以及电子邮件代理服务器,并在一个BS ...

  10. 一个很实用的css3兼容工具很多属性可以兼容到IE6

    当你看到这样的效果图是不是已经崩溃了 css3没出来之前大部分人基本都是用图片的方式拼出来的 腾讯邮箱就是这么做的 然后你想和设计说换直角吧.我用图片的好烦的感觉!而且我们还要兼容到ie6 她和你说别 ...