Given an array arr that is a permutation of [0, 1, ..., arr.length - 1], we split the array into some number of "chunks" (partitions), and individually sort each chunk.  After concatenating them, the result equals the sorted array.

What is the most number of chunks we could have made?

Example 1:

Input: arr = [4,3,2,1,0]
Output: 1
Explanation:
Splitting into two or more chunks will not return the required result.
For example, splitting into [4, 3], [2, 1, 0] will result in [3, 4, 0, 1, 2], which isn't sorted.

Example 2:

Input: arr = [1,0,2,3,4]
Output: 4
Explanation:
We can split into two chunks, such as [1, 0], [2, 3, 4].
However, splitting into [1, 0], [2], [3], [4] is the highest number of chunks possible.

Note:

  • arr will have length in range [1, 10].
  • arr[i] will be a permutation of [0, 1, ..., arr.length - 1].


1. Iterate the array, if all the elements on the left are smaller than the elements on the left, there is a new chunk. The first solution use two arrays, leftMax[i] to record the max element ending at i and starting from 0, rightMin[i] to record element starting at i and ending at 0.

Time complexity: O(n)

Space complexity: O(n)

class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int sz = arr.length;
int[] leftMax = new int[sz];
int[] rightMin = new int[sz]; leftMax[0] = arr[0];
for(int i = 1; i < sz; ++i) {
leftMax[i] = Math.max(leftMax[i-1], arr[i]);
} rightMin[sz-1] = arr[sz-1];
for(int i = sz-2; i >= 0; --i) {
rightMin[i] = Math.min(rightMin[i+1], arr[i]);
} int count = 1;
for(int i = 0; i < sz-1; ++i) {
if(leftMax[i] < rightMin[i+1] ) ++count;
} return count;
}
}

1a. Since we iterate either from left to right or right to left, we do not need two arrays to keep all the previous record and can use one varible to record the max element from the left so far, as long as the max element is smaller than the min element on the right, there is a new chunk

class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int sz = arr.length;
int[] rightMin = new int[sz];
rightMin[sz-1] = arr[sz-1];
for(int i = sz-2; i >= 0; --i) {
rightMin[i] = Math.min(rightMin[i+1], arr[i]);
} int max = arr[0];
int count = 1;
for(int i = 0; i < sz-1; ++i) {
max = Math.max(max, arr[i]);
if(max < rightMin[i+1]) ++count;
} return count;
}
}

1b. Iterate from right to left:

class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int sz = arr.length;
int[] leftMax = new int[sz];
leftMax[0] = arr[0];
for(int i = 1; i < sz; ++i) {
leftMax[i] = Math.max(leftMax[i-1], arr[i]);
} int rightMin = arr[sz-1];
int count = 1;
for(int i = sz-1; i >= 1; --i) {
rightMin = Math.min(rightMin, arr[i]);
if(leftMax[i-1] < rightMin) {
++count;
}
}
return count;
}
}

2. Since arr[i] will be a permutation of [0, 1, ..., arr.length - 1], each element is unique and after sorted, arr[i] = i, the elements on the left will be smaller than the elemnts on the right, as long as the max element at index i is arr[i].

Time complexity: O(n)

Space complexity: O(1)

class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int maxSoFar = arr[0];
int count = 0;
for(int i = 0; i < arr.length; ++i) {
maxSoFar = Math.max(maxSoFar, arr[i]);
if(maxSoFar == i) ++count;
} return count;
}
}

2a Another slightly optimisation to terminate the loop early if the max element arr[arr.length-1] is found

class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int maxSoFar = arr[0];
int count = 0;
for(int i = 0; i < arr.length; ++i) {
maxSoFar = Math.max(maxSoFar, arr[i]);
if(maxSoFar == arr.length-1) return count+1;
if(maxSoFar == i) ++count;
} return count;
}
}

3. Another way to think, if we consider each chunk, as a range [min, max] ended at max, if the next element is smaller than the previous max, we need to merge the range by poping up the max element of chunks which max element is bigger, we need to include the new element in the poped up chunks, otherwise, push the new max element. The number of elements on the stack means the number of chunks.

[4, 3, 2, 1, 0] -> [4] for 4 -> [4] for 3 -> [4] for 2 -> [4] for 1 -> [0]

[1, 0, 2, 3, 4] -> [1] -> [1] -> [1, 2] -> [1, 2, 3] -> [1, 2, 3, 4]

[1, 2, 0, 3] -> [1] -> [1, 2] -> [2] -> [2, 3]

Time complexity: O(n)

Space complexity: O(n)

class Solution {
public int maxChunksToSorted(int[] arr) {
Deque<Integer> maxStack = new LinkedList<Integer>(); for(int num: arr) {
if(maxStack.isEmpty() || num > maxStack.peek()) {
maxStack.push(num);
}
else {
int max = maxStack.peek();
while(!maxStack.isEmpty() && num < maxStack.peek()) {
maxStack.pop();
}
maxStack.push(max);
}
} return maxStack.size();
}
}

3a It can be observed from the code that we always push the current max as where the range ends.

public class Solution {

    public int maxChunksToSorted(int[] arr) {
Deque<Integer> maxStack = new LinkedList<Integer>(); for(int num: arr) {
int currMax = maxStack.isEmpty()? num: Math.max(num, maxStack.peek()); while(!maxStack.isEmpty() && num < maxStack.peek()) {
maxStack.pop();
} maxStack.push(currMax);
} return maxStack.size();
}
}

4. Another way is to caculate the distance between the current index with the expected sorted index, if the sum is 0, the whole chunk could be a sorted array.

Time complexity: O(n)

Space complexity: O(1)

public class Solution {

    public int maxChunksToSorted(int[] arr) {

        int count = 0, sum = 0;
for(int i = 0; i < arr.length; ++i) {
sum += arr[i] - i;
if(sum == 0) ++count;
}
return count;
} }

Max Chunks To Make Sorted LT769的更多相关文章

  1. [LeetCode] Max Chunks To Make Sorted II 可排序的最大块数之二

    This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...

  2. [LeetCode] Max Chunks To Make Sorted 可排序的最大块数

    Given an array arr that is a permutation of [0, 1, ..., arr.length - 1], we split the array into som ...

  3. [Swift]LeetCode768. 最多能完成排序的块 II | Max Chunks To Make Sorted II

    This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...

  4. [leetcode]Weekly Contest 68 (767. Reorganize String&&769. Max Chunks To Make Sorted&&768. Max Chunks To Make Sorted II)

    766. Toeplitz Matrix 第一题不说,贼麻瓜,好久没以比赛的状态写题,这个题浪费了快40分钟,我真是...... 767. Reorganize String 就是给你一个字符串,能不 ...

  5. LeetCode - 768. Max Chunks To Make Sorted II

    This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...

  6. 最多的划分来使数组有序 Max Chunks To Make Sorted

    2018-12-01 11:05:46 一.Max Chunks To Make Sorted 问题描述: 问题求解: 由于没有重复,所以直观的来看对于每个遇到数,其能够被划分出来的前提是其前面已经有 ...

  7. Max Chunks To Make Sorted II LT768

    This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...

  8. 768. Max Chunks To Make Sorted II

    This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...

  9. [LeetCode] 769. Max Chunks To Make Sorted 可排序的最大块数

    Given an array arr that is a permutation of [0, 1, ..., arr.length - 1], we split the array into som ...

随机推荐

  1. android TextView SetText卡顿原因

    [android TextView SetText卡顿原因] 不要用wrap_content即可. 参考:http://blog.csdn.net/self_study/article/details ...

  2. Linux yum安装MySQL5.7

    一.安装配置MySQL的yum源 # 安装MySQL的yum源,下面是RHEL6系列的下载地址 rpm -Uvh http://dev.mysql.com/get/mysql-community-re ...

  3. js 创建对象的几种方法

    1. 使用object创建 var person = new Object(); person.name = "Tom"; person.age = "29"; ...

  4. MS17-010漏洞检测

    1.扫描脚本的下载和加载 由于Metasploit还没有更新MS17-010检测的模块,所以要去exploit-db下载,并在MSF中加载. cd /usr/share/metasploit-fram ...

  5. 《xss跨站脚本剖析与防御》实验笔记

    1.书籍<xss跨站脚本剖析与防御>上介绍的xss测试代码 <img src="javascrpt:alert('xss');">, <table b ...

  6. Pandas文本操作之读取操作

    读写文本格式的数据 pandas中的解析函数 函数 说明 read_csv 从文件.url.文件型对象中加载带分隔符的数据,默认分隔符为逗号 read_table 从文件.url.文件型对象中加载带分 ...

  7. linux安装zookeeper及使用

    一.安装条件 想要安装zookeeper,必须先在linux中安装好jdk.安装步骤见: https://www.cnblogs.com/expiator/p/9987351.html 二.下载并解压 ...

  8. 第三章 列表(c)有序列表

  9. httpclient和httpUrlConnect区别

    HttpURLConnection的用法 一.创建HttpURLConnection对象 URL url = new URL("http://localhost:8080/TestHttpU ...

  10. Node使用 Express框架,实现文件上传

    一 安装依赖包 npm install multer --save 二 客户端上传文件 <!DOCTYPE html> <html> <head> <meta ...