Max Chunks To Make Sorted LT769
Given an array arr
that is a permutation of [0, 1, ..., arr.length - 1]
, we split the array into some number of "chunks" (partitions), and individually sort each chunk. After concatenating them, the result equals the sorted array.
What is the most number of chunks we could have made?
Example 1:
Input: arr = [4,3,2,1,0]
Output: 1
Explanation:
Splitting into two or more chunks will not return the required result.
For example, splitting into [4, 3], [2, 1, 0] will result in [3, 4, 0, 1, 2], which isn't sorted.
Example 2:
Input: arr = [1,0,2,3,4]
Output: 4
Explanation:
We can split into two chunks, such as [1, 0], [2, 3, 4].
However, splitting into [1, 0], [2], [3], [4] is the highest number of chunks possible.
Note:
arr
will have length in range[1, 10]
.arr[i]
will be a permutation of[0, 1, ..., arr.length - 1]
.
1. Iterate the array, if all the elements on the left are smaller than the elements on the left, there is a new chunk. The first solution use two arrays, leftMax[i] to record the max element ending at i and starting from 0, rightMin[i] to record element starting at i and ending at 0.
Time complexity: O(n)
Space complexity: O(n)
class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int sz = arr.length;
int[] leftMax = new int[sz];
int[] rightMin = new int[sz]; leftMax[0] = arr[0];
for(int i = 1; i < sz; ++i) {
leftMax[i] = Math.max(leftMax[i-1], arr[i]);
} rightMin[sz-1] = arr[sz-1];
for(int i = sz-2; i >= 0; --i) {
rightMin[i] = Math.min(rightMin[i+1], arr[i]);
} int count = 1;
for(int i = 0; i < sz-1; ++i) {
if(leftMax[i] < rightMin[i+1] ) ++count;
} return count;
}
}
1a. Since we iterate either from left to right or right to left, we do not need two arrays to keep all the previous record and can use one varible to record the max element from the left so far, as long as the max element is smaller than the min element on the right, there is a new chunk
class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int sz = arr.length;
int[] rightMin = new int[sz];
rightMin[sz-1] = arr[sz-1];
for(int i = sz-2; i >= 0; --i) {
rightMin[i] = Math.min(rightMin[i+1], arr[i]);
} int max = arr[0];
int count = 1;
for(int i = 0; i < sz-1; ++i) {
max = Math.max(max, arr[i]);
if(max < rightMin[i+1]) ++count;
} return count;
}
}
1b. Iterate from right to left:
class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int sz = arr.length;
int[] leftMax = new int[sz];
leftMax[0] = arr[0];
for(int i = 1; i < sz; ++i) {
leftMax[i] = Math.max(leftMax[i-1], arr[i]);
} int rightMin = arr[sz-1];
int count = 1;
for(int i = sz-1; i >= 1; --i) {
rightMin = Math.min(rightMin, arr[i]);
if(leftMax[i-1] < rightMin) {
++count;
}
}
return count;
}
}
2. Since arr[i]
will be a permutation of [0, 1, ..., arr.length - 1], each element is unique and after sorted, arr[i] = i, the elements on the left will be smaller than the elemnts on the right, as long as the max element at index i is arr[i].
Time complexity: O(n)
Space complexity: O(1)
class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int maxSoFar = arr[0];
int count = 0;
for(int i = 0; i < arr.length; ++i) {
maxSoFar = Math.max(maxSoFar, arr[i]);
if(maxSoFar == i) ++count;
} return count;
}
}
2a Another slightly optimisation to terminate the loop early if the max element arr[arr.length-1] is found
class Solution {
public int maxChunksToSorted(int[] arr) {
if(arr == null) return 1; int maxSoFar = arr[0];
int count = 0;
for(int i = 0; i < arr.length; ++i) {
maxSoFar = Math.max(maxSoFar, arr[i]);
if(maxSoFar == arr.length-1) return count+1;
if(maxSoFar == i) ++count;
} return count;
}
}
3. Another way to think, if we consider each chunk, as a range [min, max] ended at max, if the next element is smaller than the previous max, we need to merge the range by poping up the max element of chunks which max element is bigger, we need to include the new element in the poped up chunks, otherwise, push the new max element. The number of elements on the stack means the number of chunks.
[4, 3, 2, 1, 0] -> [4] for 4 -> [4] for 3 -> [4] for 2 -> [4] for 1 -> [0]
[1, 0, 2, 3, 4] -> [1] -> [1] -> [1, 2] -> [1, 2, 3] -> [1, 2, 3, 4]
[1, 2, 0, 3] -> [1] -> [1, 2] -> [2] -> [2, 3]
Time complexity: O(n)
Space complexity: O(n)
class Solution {
public int maxChunksToSorted(int[] arr) {
Deque<Integer> maxStack = new LinkedList<Integer>(); for(int num: arr) {
if(maxStack.isEmpty() || num > maxStack.peek()) {
maxStack.push(num);
}
else {
int max = maxStack.peek();
while(!maxStack.isEmpty() && num < maxStack.peek()) {
maxStack.pop();
}
maxStack.push(max);
}
} return maxStack.size();
}
}
3a It can be observed from the code that we always push the current max as where the range ends.
public class Solution { public int maxChunksToSorted(int[] arr) {
Deque<Integer> maxStack = new LinkedList<Integer>(); for(int num: arr) {
int currMax = maxStack.isEmpty()? num: Math.max(num, maxStack.peek()); while(!maxStack.isEmpty() && num < maxStack.peek()) {
maxStack.pop();
} maxStack.push(currMax);
} return maxStack.size();
}
}
4. Another way is to caculate the distance between the current index with the expected sorted index, if the sum is 0, the whole chunk could be a sorted array.
Time complexity: O(n)
Space complexity: O(1)
public class Solution { public int maxChunksToSorted(int[] arr) { int count = 0, sum = 0;
for(int i = 0; i < arr.length; ++i) {
sum += arr[i] - i;
if(sum == 0) ++count;
}
return count;
} }
Max Chunks To Make Sorted LT769的更多相关文章
- [LeetCode] Max Chunks To Make Sorted II 可排序的最大块数之二
This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...
- [LeetCode] Max Chunks To Make Sorted 可排序的最大块数
Given an array arr that is a permutation of [0, 1, ..., arr.length - 1], we split the array into som ...
- [Swift]LeetCode768. 最多能完成排序的块 II | Max Chunks To Make Sorted II
This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...
- [leetcode]Weekly Contest 68 (767. Reorganize String&&769. Max Chunks To Make Sorted&&768. Max Chunks To Make Sorted II)
766. Toeplitz Matrix 第一题不说,贼麻瓜,好久没以比赛的状态写题,这个题浪费了快40分钟,我真是...... 767. Reorganize String 就是给你一个字符串,能不 ...
- LeetCode - 768. Max Chunks To Make Sorted II
This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...
- 最多的划分来使数组有序 Max Chunks To Make Sorted
2018-12-01 11:05:46 一.Max Chunks To Make Sorted 问题描述: 问题求解: 由于没有重复,所以直观的来看对于每个遇到数,其能够被划分出来的前提是其前面已经有 ...
- Max Chunks To Make Sorted II LT768
This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...
- 768. Max Chunks To Make Sorted II
This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...
- [LeetCode] 769. Max Chunks To Make Sorted 可排序的最大块数
Given an array arr that is a permutation of [0, 1, ..., arr.length - 1], we split the array into som ...
随机推荐
- spring boot 2 内嵌Tomcat Stopping service [Tomcat]
我在使用springboot时,当代码有问题时,发现控制台打印下面信息: Connected to the target VM, address: '127.0.0.1:42091', transpo ...
- Spring 手动 提交事务
1.配置文件 applicationContext.xml: <bean id="txManager"class="org.springframework.jdbc ...
- 《xss跨站脚本剖析与防御》实验笔记
1.书籍<xss跨站脚本剖析与防御>上介绍的xss测试代码 <img src="javascrpt:alert('xss');">, <table b ...
- 可上下拖动且有浮沉动画的View
package com.ifenglian.superapp1; import android.animation.Animator;import android.animation.Animator ...
- Codeforces Beta Round #63 (Div. 2)
Codeforces Beta Round #63 (Div. 2) http://codeforces.com/contest/69 A #include<bits/stdc++.h> ...
- ES6之Promise对象
创建Promise对象 function getHtml(url) { return new Promise((resolve, reject) => { let xhr = new XMLHt ...
- js数组排序实用方法集锦
前言: 据说程序员三个月就能忘记自己写的代码,所以最好是在有空的时候及时做些总结,记录下来,这样后边遇到类似问题的话,就可以直接先查看自己的博客了.写技术博客,对自己是一种总结,对别人,是一种参考. ...
- stark组件之路由分发【模仿Django的admin】
一.先看下django的admin是如何进行路由分发的 1.先看下django的admin的url路径有哪些 其实很简单,假如有一个书籍表,那么每张表对应四个url,增.删.改.查 查看的url ht ...
- Java09-java语法基础(八)java中的方法
Java09-java语法基础(八)java中的方法 一.方法(函数/过程):是一个程序块,可以完成某种功能 1.java中方法的定义格式 [访问控制修饰符] 返回值类型 方法名(参数列表){ 方 ...
- AngularJS——第9章 模块加载
第9章 模块加载 AngularJS模块可以在被加载和执行之前对其自身进行配置.我们可以在应用的加载阶段配置不同的逻辑. [AngularJS执行流程] 启动阶段(startup) 开始 --> ...