动态规划算法——最长公共子序列问题(java实现)
已知序列X=(A,B,C,A,B,D,A)和序列Y=(B,A,D,B,A),求它们的最长公共子序列S。
/*
* LCSLength.java
* Version 1.0.0
* Created on 2017年11月30日
* Copyright ReYo.Cn
*/
package reyo.sdk.utils.test.dy; /**
* <B>创 建 人:</B>AdministratorReyoAut <BR>
* <B>创建时间:</B>2017年11月30日 下午5:20:29<BR>
*
* @author ReYo
* @version 1.0
*/
/**
* 最长公共子序列问题。
* 已知序列X=(A,B,C,A,B,D,A)和序列Y=(B,A,D,B,A)
* 求它们的最长公共子序列S
* @author 光
*/
public class LCSLength { /**
* 获得矩阵dp
* dp矩阵最右下角的值为两个序列的最长公共子序列的长度
* @param str1
* @param str2
* @return
*/
public int[][] get_dp(char[] str1, char[] str2) {
int[][] dp = new int[str1.length][str2.length];
dp[0][0] = str1[0] == str2[0] ? 1 : 0;
for (int i = 1; i < str1.length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], str1[i] == str2[0] ? 1 : 0);
}
for (int j = 1; j < str2.length; j++) {
dp[0][j] = Math.max(dp[0][j - 1], str1[0] == str2[j] ? 1 : 0);
}
for (int i = 1; i < str1.length; i++) {
for (int j = 1; j < str2.length; j++) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
if (str1[i] == str2[j]) {
dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - 1] + 1);
}
}
}
return dp;
} /**
* 通过dp矩阵求解最长公共子序列的过程
* 就是还原出当时如何求解dp的过程,
* 来自哪个方向的策略就朝哪个方向移动
* @param s1
* @param s2
* @return
*/
public String lcse(String s1, String s2) {
if (s1 == null || s2 == null || s1.equals("") || s2.equals("")) {
return "";
}
char[] c1 = s1.toCharArray();
char[] c2 = s2.toCharArray();
int[][] dp = get_dp(c1, c2);
int m = c1.length - 1;
int n = c2.length - 1;
char[] result = new char[dp[m][n]];
int index = result.length - 1;
while (index >= 0) {
if (n > 0 && dp[m][n] == dp[m][n - 1]) {//向左移动
n--;
} else if (m > 0 && dp[m][n] == dp[m - 1][n]) {//向上移动
m--;
} else {//向左上方移动
result[index--] = c1[m];
m--;
n--;
}
}
return String.valueOf(result);
} public static void main(String[] args) {
String str1 = "abbzqaba";
String str2 = "sababqcz";
LCSLength l = new LCSLength();
System.out.println(l.lcse(str1, str2));
}
}
动态规划算法——最长公共子序列问题(java实现)的更多相关文章
- 算法复习周------“动态规划之‘最长公共子序列’”&&《计蒜课》---最长公共子串题解
问题描述: 这个问题其实很容易理解.就是给你两个序列X={x1,x2,x3......xm} Y={y1,y2,y3......ym},要求找出X和Y的一个最长的公共子序列. 例:Xi={A, B, ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 动态规划经典——最长公共子序列问题 (LCS)和最长公共子串问题
一.最长公共子序列问题(LCS问题) 给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子序列,并返回其长度.例如: A = "HelloWorld" B = & ...
- HDU 1159 Common Subsequence (动态规划、最长公共子序列)
Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- 【转】动态规划之最长公共子序列(LCS)
[原文链接]最长公共子序列(Longest Common Subsequence,简称 LCS)是一道非常经典的面试题目,因为它的解法是典型的二维动态规划,大部分比较困难的字符串问题都和这个问题一个套 ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- HDU 1243 反恐训练营 (动态规划求最长公共子序列)
反恐训练营 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
随机推荐
- 2018-2019-2 网络对抗技术 20165301 Exp2 后门原理与实践
2018-2019-2 网络对抗技术 20165301 Exp2 后门原理与实践 实验内容 (1)使用netcat获取主机操作Shell,cron启动 (2)使用socat获取主机操作Shell, 任 ...
- CSU 1948: 超级管理员(普通费用流&&zkw费用流)
Description 长者对小明施加了膜法,使得小明每天起床就像马丁的早晨一样. 今天小明早上醒来发现自己成了一位仓管员.仓库可以被描述为一个n × m的网格,在每个网格上有几个箱子(可能没有).为 ...
- Scala 学习笔记(1)之入门篇
Scala is pronounced skah-lah. Scala 全称为 scalable language,是一种面向对象(object)- 函数式(functional)静态类型(stati ...
- AndroidStudio3.0以上版本的坑
原文:https://blog.csdn.net/ytfunnysite/article/details/78864556 1.Error:Failed to resolve: com.android ...
- Codeforces 12D Ball cdq分治
裸的cdq, 没啥好说的, 要注意mid左边和mid右边的a相同的情况. #include<bits/stdc++.h> #define LL long long #define fi f ...
- Codeforces Round #355 (Div. 2) D. Vanya and Treasure
题目大意: 给你一个n × m 的图,有p种宝箱, 每个点上有一个种类为a[ i ][ j ]的宝箱,a[ i ][ j ] 的宝箱里有 a[ i ][ j ] + 1的钥匙,第一种宝箱是没有锁的, ...
- 029 RDD Join相关API,以及程序
1.数据集 A表数据: 1 a 2 b 3 c B表数据: 1 aa1 1 aa2 2 bb1 2 bb2 2 bb3 4 dd1 2.join的分类 inner join left outer jo ...
- 心跳包(HeartBeat)
http://itindex.net/detail/52922-%E5%BF%83%E8%B7%B3-heartbeat-coderzh 几乎所有的网游服务端都有心跳包(HeartBeat或Ping) ...
- Android-Toolbar相关
Android-Toolbar相关 学习自 <Android第一行代码> https://www.jianshu.com/p/79604c3ddcae https://www.jiansh ...
- 分位函数(四分位数)概念与pandas中的quantile函数
p分位函数(四分位数)概念与pandas中的quantile函数 函数原型 DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpola ...