Peaceful Commission

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4180    Accepted Submission(s): 1395

Problem Description

The Public Peace Commission should be legislated in Parliament of The Democratic Republic of Byteland according to The Very Important Law. Unfortunately one of the obstacles is the fact that some deputies do not get on with some others.

The Commission has to fulfill the following conditions: 
1.Each party has exactly one representative in the Commission, 
2.If two deputies do not like each other, they cannot both belong to the Commission.

Each party has exactly two deputies in the Parliament. All of them are numbered from 1 to 2n. Deputies with numbers 2i-1 and 2i belong to the i-th party .

Task 
Write a program, which: 
1.reads from the text file SPO.IN the number of parties and the pairs of deputies that are not on friendly terms, 
2.decides whether it is possible to establish the Commission, and if so, proposes the list of members, 
3.writes the result in the text file SPO.OUT. 

 

Input

In the first line of the text file SPO.IN there are two non-negative integers n and m. They denote respectively: the number of parties, 1 <= n <= 8000, and the number of pairs of deputies, who do not like each other, 0 <= m <=2 0000. In each of the following m lines there is written one pair of integers a and b, 1 <= a < b <= 2n, separated by a single space. It means that the deputies a and b do not like each other. 
There are multiple test cases. Process to end of file. 
 

Output

The text file SPO.OUT should contain one word NIE (means NO in Polish), if the setting up of the Commission is impossible. In case when setting up of the Commission is possible the file SPO.OUT should contain n integers from the interval from 1 to 2n, written in the ascending order, indicating numbers of deputies who can form the Commission. Each of these numbers should be written in a separate line. If the Commission can be formed in various ways, your program may write mininum number sequence. 
 

Sample Input

3 2
1 3
2 4
 

Sample Output

1
4
5
 

Source

 
染色法的2-SAT
 //2017-08-28
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector> using namespace std; const int N = ;
const int M = ;
const int INF = 0x3f3f3f3f;
int head[N], tot;
struct Edge{
int to, next;
}edge[M]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} bool book[N];
vector<int> vec;//保存dfs过程中经过的点 //input: u 顶点
//output: true 从u开始染色,不会出现NOT u和u染为同一种颜色; false dfs染色失败
bool dfs(int u){
if(book[u^])return false;//表示染到非u,染色失败
if(book[u])return true;
book[u] = true;
vec.push_back(u);
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!dfs(v))
return false;
}
return true;
} //input:n 图的顶点数
//output:true 存在可行解; false 不存在可行解
bool twoSAT(int n){
memset(book, , sizeof(book));
for(int u = ; u < n; u += ){
if(book[u] || book[u^])continue;
vec.clear();
if(!dfs(u)){//如果选u不成功,把dfs过程中的点都从答案中删去
for(int i = ; i < vec.size(); i++)
book[vec[i]] = ;
vec.clear();
if(!dfs(u^))return false;//如果选NOT u也不成功,说明不存在可行解
}
}
return true;
} int n, m; int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputG.txt", "r", stdin);
while(cin>>n>>m){
init();
int u, v;
while(m--){
cin>>u>>v;
u--; v--;
add_edge(u, v^);// u -> NOT v
add_edge(v, u^);// v -> NOT u
}
if(twoSAT(n<<)){
for(int i = ; i < (n<<); i++)//字典序输出解
if(book[i])
cout<<i+<<endl;
}else cout<<"NIE"<<endl;
}
return ;
}

HDU1814(2-SAT)的更多相关文章

  1. 多边形碰撞 -- SAT方法

    检测凸多边形碰撞的一种简单的方法是SAT(Separating Axis Theorem),即分离轴定理. 原理:将多边形投影到一条向量上,看这两个多边形的投影是否重叠.如果不重叠,则认为这两个多边形 ...

  2. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  3. 2—sat

    模型的解决方法看论文<利用对称性解决2-SAT问题> HDU1814 :难度1.5 HDU1824: 难度 2 HDU1815: 难度3 HDU1816: 对于每两个人,二选一HDU181 ...

  4. hdu1814 Peaceful Commission

    hdu1814 Peaceful Commission 题意:2-sat裸题,打印字典序最小的 我写了三个 染色做法,正解 scc做法,不管字典序 scc做法,错误的字典序贪心 #include &l ...

  5. Map Labeler POJ - 2296(2 - sat 具体关系建边)

    题意: 给出n个点  让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...

  6. HDU1814 Peaceful Commission 2-sat

    原文链接http://www.cnblogs.com/zhouzhendong/p/8099115.html 题目传送门 - HDU1814 题面 Description 根据宪法,Byteland民 ...

  7. HDU3062&&HDU1814

    Preface 两道2-SAT模板题. HDU3062 看题目就一眼2-SAT.一对夫妻看成一个变量,之间的矛盾可以看成限制. 考虑不同席的限制,相当于选了\(i\)就不选\(j\),即必选\(j'\ ...

  8. 学习笔记(two sat)

    关于two sat算法 两篇很好的论文由对称性解2-SAT问题(伍昱), 赵爽 2-sat解法浅析(pdf). 一些题目的题解 poj 3207 poj 3678 poj 3683 poj 3648 ...

  9. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  10. HIT 1917 2—SAT

    题目大意:一国有n个党派,每个党派在议会中都有2个代表, 现要组建和平委员会,要从每个党派在议会的代表中选出1人,一共n人组成和平委员会. 已知有一些代表之间存在仇恨,也就是说他们不能同时被选为和平委 ...

随机推荐

  1. Linux防火墙配置与管理(16)

    防火墙指的是一个由软件和硬件设备组合而成.在内部网和外部网之间.专用网与公共网之间的边界上构造的保护屏障.是一种获取安全性方法的形象说法,它是一种计算机硬件和软件的结合,使Internet与Intra ...

  2. day02 基本数据类型与运算符

    day02 1.基本数据类型 2.算术运算符 +,-,*,/,%,++,-- 3.赋值运算符 =,+=,-=,*=,/=,%= 4.关系运算符 +=,-=,*=,/=,%=  结果是boolean类型 ...

  3. SQL Server 用户'NT AUTHORITY\IUSR' 登录失败

    今天打开网站时,突然报这个错误,平时都好好的 Cannot open database "JMECC" requested by the login. The login fail ...

  4. java批量解压文件夹下的所有压缩文件(.rar、.zip、.gz、.tar.gz)

    // java批量解压文件夹下的所有压缩文件(.rar..zip..gz..tar.gz) 新建工具类: package com.mobile.utils; import com.github.jun ...

  5. iOS开发-仿微信图片分享界面实现

    分享功能目前几乎已成为很多app的标配了,其中微信,微博等app的图片分享界面设计的很棒,不仅能够展示缩略图,还可以预览删除.最近我在做一款社交分享app,其中就要实现图文分享功能,于是试着自行实现仿 ...

  6. git常用命令(todo...)

    git init在目录中执行 git init,就可以创建一个 Git 仓库 git add test.javagit add 命令可将该文件添加到缓存(暂存区) git commit test.ja ...

  7. mysql添加类似oracle的伪列及查看表信息

    sql格式: AS rownum, table_name.* ) r, table_name; AS rownum, table_name.字段1, table_name.字段2, table_nam ...

  8. Java生成某段时间内的随机时间

    上代码: import java.text.SimpleDateFormat; import java.util.Date; public class DateUtil { /** * 生成随机时间 ...

  9. python使用(四)

    1.file_os_option.py2.file_option.py3.configfile_option.py4.logger_option.py 1.file_os_option.py # co ...

  10. 分析NonfairSync加锁/解锁过程

    类继承关系: NonfairSync => Sync => AbstractQueuedSynchronizer 类NonfairSync final void lock() { if ( ...