【机器学习】EM算法详细推导和讲解
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教。
众所周知,极大似然估计是一种应用很广泛的参数估计方法。例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差。这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度。
然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北人”还是“四川人”,我想如果把这个数据集的概率密度画出来,大约是这个样子:
好了不要吐槽了,能画成这个样子我已经很用心了= =
其实这个双峰的概率密度函数是有模型的,称作高斯混合模型(GMM),写作:
话说往博客上加公式真是费劲= =这模型很好理解,就是k个高斯模型加权组成,α是各高斯分布的权重,Θ是参数。对GMM模型的参数估计,就要用EM算法。更一般的讲,EM算法适用于带有隐变量的概率模型的估计,什么是隐变量呢?就是观测不到的变量,对于上面四川人和东北人的例子,对每一个身高而言,它来自四川还是东北,就是一个隐变量。
为什么要用EM,我们来具体考虑一下上面这个问题。如果使用极大似然估计——这是我们最开始最单纯的想法,那么我们需要极大化的似然函数应该是这个:
然而我们并不知道p(x;θ)的表达式,有同学说我知道啊,不就是上面那个混个高斯模型?不就是参数多一点麽。
仔细想想,GMM里的θ可是由四川人和东北人两部分组成哟,假如你要估计四川人的身高均值,直接用GMM做似然函数,会把四川人和东北人全考虑进去,显然不合适。
另一个想法是考虑隐变量,如果我们已经知道哪些样本来自四川,哪些样本来自东北,那就好了。用Z=0或Z=1标记样本来自哪个总体,则Z就是隐变量,需要最大化的似然函数就变为:
然而并没有卵用,因为隐变量确实不知道。要估计一个样本是来自四川还是东北,我们就要有模型参数,要估计模型参数,我们首先要知道一个样本是来自四川或东北的可能性...
到底是鸡生蛋,还是蛋生鸡?
不闹了,我们的方法是假设。首先假设一个模型参数θ,然后每个样本来自四川/东北的概率p(zi)就能算出来了,p(xi,zi)=p(xi|zi)p(zi),而x|z=0服从四川人分布,x|z=1服从东北人分布,所以似然函数可以写成含有θ的函数,极大化它我们可以得到一个新的θ。新的θ因为考虑了样本来自哪个分布,会比原来的更能反应数据规律。有了这个更好的θ我们再对每个样本重新计算它来自四川和东北的概率,用更好的θ算出来的概率会更准确,有了更准确的信息,我们可以继续像上面一样估计θ,自然而然这次得到的θ会比上一次更棒,如此蒸蒸日上,直到收敛(参数变动不明显了),理论上,EM算法就说完了。
然而事情并没有这么简单,上面的思想理论上可行,实践起来不成。主要是因为似然函数有“和的log”这一项,log里面是一个和的形式,一求导这画面不要太美,直接强来你要面对 “两个正态分布的概率密度函数相加”做分母,“两个正态分布分别求导再相加”做分子的分数形式。m个这玩意加起来令它等于0,要求出关于θ的解析解,你对自己的数学水平想的不要太高。
怎么办?先介绍一个不等式,叫Jensen不等式,是这样说的:
X是一个随机变量,f(X)是一个凸函数(二阶导数大或等于0),那么有:
当且仅当X是常数的时候等号成立
如果f(X)是凹函数,不等号反向
关于这个不等式,我既不打算证明,也不打算说明,希望你承认它正确就好。
半路杀出一个Jensen不等式,要用它解决上面的困境也是应有之义,不然说它做什么。直接最大化似然函数做不到,那么如果我们能找到似然函数的一个紧的下界一直优化它,并保证每次迭代能够使总的似然函数一直增大,其实也是一样的。怎么说?画个图你就明白了:
图画的不好,多见谅。横坐标是参数,纵坐标是似然函数,首先我们初始化一个θ1,根据它求似然函数一个紧的下界,也就是图中第一条黑短线,黑短线上的值虽然都小于似然函数的值,但至少有一点可以满足等号(所以称为紧下界),最大化小黑短线我们就hit到至少与似然函数刚好相等的位置,对应的横坐标就是我们的新的θ2,如此进行,只要保证随着θ的更新,每次最大化的小黑短线值都比上次的更大,那么算法收敛,最后就能最大化到似然函数的极大值处。
构造这个小黑短线,就要靠Jensen不等式。注意我们这里的log函数是个凹函数,所以我们使用的Jensen不等式的凹函数版本。根据Jensen函数,需要把log里面的东西写成一个数学期望的形式,注意到log里的和是关于隐变量Z的和,于是自然而然,这个数学期望一定是和Z有关,如果设Q(z)是Z的分布函数,那么可以这样构造:
这几句公式比较多,我不一一敲了,直接把我PPT里的内容截图过来:
所以log里其实构造了一个随机变量Y,Y是Z的函数,Y取p/Q的值的概率是Q,这点说的很清楚了。
构造好数学期望,下一步根据Jensen不等式进行放缩:
有了这一步,我们看一下整个式子:
也就是说我们找到了似然函数的一个下界,那么优化它是否就可以呢?不是的,上面说了必须保证这个下界是紧的,也就是至少有点能使等号成立。由Jensen不等式,等式成立的条件是随机变量是常数,具体到这里,就是:
又因为Q(z)是z的分布函数,所以:
把C乘过去,可得C就是p(xi,z)对z求和,所以我们终于知道了:
得到Q(z),大功告成,Q(z)就是p(zi|xi),或者写成p(zi),都是一回事,代表第i个数据是来自zi的概率。
于是EM算法出炉,它是这样做的:
首先,初始化参数θ
(1)E-Step:根据参数θ计算每个样本属于zi的概率,即这个身高来自四川或东北的概率,这个概率就是Q
(2)M-Step:根据计算得到的Q,求出含有θ的似然函数的下界并最大化它,得到新的参数θ
重复(1)和(2)直到收敛,可以看到,从思想上来说,和最开始没什么两样,只不过直接最大化似然函数不好做,曲线救国而已。
至于为什么这样的迭代会保证似然函数单调不减,即EM算法的收敛性证明,我就先不写了,以后有时间再考虑补。需要额外说明的是,EM算法在一般情况是收敛的,但是不保证收敛到全局最优,即有可能进入局部的最优。EM算法在混合高斯模型,隐马尔科夫模型中都有应用,是著名的数据挖掘十大算法之一。
就酱~有什么错漏和不同见解欢迎留言评论,我的推导和思路整理和网上的其他并不是完全相同,见仁见智吧~
【机器学习】EM算法详细推导和讲解的更多相关文章
- 机器学习-EM算法笔记
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型 ...
- EM算法简易推导
EM算法推导 网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘. 在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可.但 ...
- 转载:EM算法的最精辟讲解
机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM ...
- 机器学习-EM算法-pLSA模型笔记
pLSA模型--基于概率统计的pLSA模型(probabilistic Latent Semantic Analysis,概率隐语义分析),增加了主题模型,形成简单的贝叶斯网络,可以使用EM算法学习模 ...
- 机器学习——EM算法与GMM算法
目录 最大似然估计 K-means算法 EM算法 GMM算法(实际是高斯混合聚类) 中心思想:①极大似然估计 ②θ=f(θold) 此算法非常老,几乎不会问到,但思想很重要. EM的原理推导还是蛮复杂 ...
- 机器学习——EM算法
1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法 ...
- EM算法以及推导
EM算法 Jensen不等式 其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有 \[ \lambda f(x) + (1-\lambda)f(y) ...
- EM算法-完整推导
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来 ...
- 机器学习-EM算法
最大期望算法 EM算法的正式提出来自美国数学家Arthur Dempster.Nan Laird和Donald Rubin,其在1977年发表的研究对先前出现的作为特例的EM算法进行了总结并给出了标准 ...
随机推荐
- [转载]java开发中的23种设计模式
原文链接:http://blog.csdn.net/zhangerqing 设计模式(Design Patterns) ——可复用面向对象软件的基础 设计模式(Design pattern)是一套被反 ...
- Java知识锦囊
最近突然想回顾一下之前的文章,回顾复习一下,正好把觉得还不错的文章收录到这里,方便查阅 Java 2018-04-02 Java计数器之CountDownLatch.CyclicBarrier.Sem ...
- 详述MSSQL服务在渗透测试中的利用(上篇)
前言: 致力于复现最实用的漏洞利用过程. 本文将带领大家学习以下内容: 学习使用`xp_cmdshell`扩展存储过程 学习调用`wscript.shell` 学习MSSQL写文件 学习沙盘模式提权 ...
- 解决微信小程序要求的TLS版本必须大于等于1.2的问题
一.环境: CentOS 6.8 nginx 1.6.0 php 7.0.10 二.背景 最近开发一个小程序,而小程序对后台接口服务器的要求是: 1.请求域名在request合法域名中 2.基于 ht ...
- 05-02 Java 一维数组、内存分配、数组操作
数组的定义 动态初始化 /* 数组:存储同一种数据类型的多个元素的容器. 定义格式: A:数据类型[] 数组名; B:数据类型 数组名[]; 举例: A:int[] a; 定义一个int类型的数组a变 ...
- [Umbraco] DocumentType设计指南
1. 命名规则 1.1. 文档类型(DocumentType)命名规则 图 1. Document Type命名示例 名称(Name) 采用帕斯卡命名法 如:TextPage 别名(Alias) ...
- let'encript 解决证书问题
今天服务器let'encript证书过期了,年纪大了老忘,不得不把别人的博客看一遍,就是因为我不想定时任务执行acme_tiny.py,还是写个文档记下,很久不写对外博客了,冒个泡. 1.创建普通域名 ...
- sql server 主从库设计和数据库镜像设计
sql server 主从设计可以通过sql server 的发布订阅实现,在大数据量的时候不要用快照发布,要使用事务发布的方式实现. 主从的设计后,要将数据库的读写分离,实现数据库效率的提示 而数据 ...
- Python之Pyautogui模块20180125《PYTHON快速上手让繁琐的工作自动化》18章
复习 PyAutoGUI 的函数本章介绍了许多不同函数,下面是快速的汇总参考:moveTo(x,y)将鼠标移动到指定的 x.y 坐标.moveRel (xOffset,yOffset)相对于当前位置移 ...
- Apache版本的Hadoop HA集群启动详细步骤【包括Zookeeper、HDFS HA、YARN HA、HBase HA】(图文详解)
不多说,直接上干货! 1.先每台机器的zookeeper启动(bigdata-pro01.kfk.com.bigdata-pro02.kfk.com.bigdata-pro03.kfk.com) 2. ...