列举常见的几种数据集增强方法:

1.flip  翻折(左右,上下)

# NumPy.'img' = A single image.
flip_1 = np.fliplr(img)
# TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
flip_2 = tf.image.flip_up_down(x)
flip_3 = tf.image.flip_left_right(x)
flip_4 = tf.image.random_flip_up_down(x)
flip_5 = tf.image.random_flip_left_right(x)

2.rotation 旋转

# Placeholders: 'x' = A single image, 'y' = A batch of images
# 'k' denotes the number of 90 degree anticlockwise rotations
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
rot_90 = tf.image.rot90(img, k=1)
rot_180 = tf.image.rot90(img, k=2)
# To rotate in any angle. In the example below, 'angles' is in radians
shape = [batch, height, width, 3]
y = tf.placeholder(dtype = tf.float32, shape = shape)
rot_tf_180 = tf.contrib.image.rotate(y, angles=3.1415)
# Scikit-Image. 'angle' = Degrees. 'img' = Input Image
# For details about 'mode', checkout the interpolation section below.
rot = skimage.transform.rotate(img, angle=45, mode='reflect')

3.scale 缩放

# Scikit Image. 'img' = Input Image, 'scale' = Scale factor
# For details about 'mode', checkout the interpolation section below.
scale_out = skimage.transform.rescale(img, scale=2.0, mode='constant')
scale_in = skimage.transform.rescale(img, scale=0.5, mode='constant')
# Don't forget to crop the images back to the original size (for
# scale_out)

4.crop 裁剪

# TensorFlow. 'x' = A placeholder for an image.
original_size = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = original_size)
# Use the following commands to perform random crops
crop_size = [new_height, new_width, channels]
seed = np.random.randint(1234)
x = tf.random_crop(x, size = crop_size, seed = seed)
output = tf.images.resize_images(x, size = original_size)

5.translation 水平或竖直移动

# pad_left, pad_right, pad_top, pad_bottom denote the pixel
# displacement. Set one of them to the desired value and rest to 0
shape = [batch, height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# We use two functions to get our desired augmentation
x = tf.image.pad_to_bounding_box(x, pad_top, pad_left, height + pad_bottom + pad_top, width + pad_right + pad_left)
output = tf.image.crop_to_bounding_box(x, pad_bottom, pad_right, height, width)

6.gaussion noise 噪点

#TensorFlow. 'x' = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# Adding Gaussian noise
noise = tf.random_normal(shape=tf.shape(x), mean=0.0, stddev=1.0,
dtype=tf.float32)
output = tf.add(x, noise)

7.gan高级增强

旋转、缩放等操作,有可能造成未知区域弥补,具体细节以及上面各种方法,见下面原文链接介绍。

源文:https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

译文:https://blog.csdn.net/u010801994/article/details/81914716

enlarge your dataset的更多相关文章

  1. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  2. Paper: ImageNet Classification with Deep Convolutional Neural Network

    本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...

  3. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  4. 使用Keras基于RCNN类模型的卫星/遥感地图图像语义分割

    遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision ...

  5. Install Tensorflow object detection API in Anaconda (Windows)

    This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as ...

  6. HTML5 数据集属性dataset

    有时候在HTML元素上绑定一些额外信息,特别是JS选取操作这些元素时特别有帮助.通常我们会使用getAttribute()和setAttribute()来读和写非标题属性的值.但为此付出的代价是文档将 ...

  7. C#读取Excel,或者多个excel表,返回dataset

    把excel 表作为一个数据源进行读取 /// <summary> /// 读取Excel单个Sheet /// </summary> /// <param name=& ...

  8. DataTable DataRow DataColumn DataSet

    1.DataTable 数据表(内存) 2.DataRow DataTable 的行 3.DataColumn DataTable 的列 4.DataSet 内存中的缓存

  9. C# DataSet装换为泛型集合

    1.DataSet装换为泛型集合(注意T实体的属性其字段类型与dataset字段类型一一对应) #region DataSet装换为泛型集合 /// <summary> /// 利用反射和 ...

随机推荐

  1. workerman-todpole 执行流程(3)

    通过前两篇文章的分析: workerman-todpole 执行流程(1) workerman-todpole 执行流程(2) 我们已经详细了解了主进程以及子进程的启动细节,但之前的文章并没有考虑 W ...

  2. <基础> PHP 进阶之 抽象类(abstract)、接口(interface)、Trait(特征)

    抽象类 PHP 5 支持抽象类和抽象方法.定义为抽象的类不能被实例化. 抽象方法只能在抽象类中,抽象类中可以包含非抽象方法 被定义为抽象的方法只是声明了其调用方式(参数),不能定义其具体的功能实现 继 ...

  3. Zookpeer集群节点

    Adaptive Communication Environment(自适配通信环境),简称ACE. reference artfile:zookeeper单节点与集群的安装https://blog. ...

  4. jquery-menu-aim插件实现二级导航

    jquery-menu-aim插件是实现二级导航亚马逊式三角滑动的强力工具,它在性能上极佳,快速滑动,基本无延迟效果,源码位置见对应作者的github,接下来附上样例代码: $(function () ...

  5. 修改页面中显示出需要修改的数据(包括select选择框复显示)

    页面中需要用到某个对象时,在底层代码中赋值,然后页面用java代码进行获取调用 如下截图: select复显示:根据后台方法赋值选择框 ,并设置初始值 按钮及选择框的禁用(五种方法): 方法一: $( ...

  6. 1047B_Cover Points

    B. Cover Points time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  7. 腾讯助理PHP开发工程师外包岗面经

    校招错过腾讯了,在社招上看到腾讯有招外包岗,要求比正式岗低,于是抱着试一试的心态投了简历,没一会就收到了笔试题,还算简单. 第二天收到面试官的面试邀请,然后去面试了…… 腾讯里面真是漂亮,光是看装潢就 ...

  8. Java IO流学习总结七:Commons IO 2.5-FileUtils

    在上面的几篇文章中,介绍了IO的常规用法,今天介绍 Commons IO 框架的使用. Commons IO简介 Apache Commons IO是Apache基金会创建并维护的Java函数库.它提 ...

  9. 前后台联调,突然所有的接口请求状态为200,但response什么都没有只有一句灰色的英文

    问题解决了,图就下次遇到截图补上: 解决问题的方法,是让后台查看数据库是否锁库,或者更改什么配置文件例如.xml文件,还有就是ip错误:

  10. ArcGIS案例学习笔记-CAD数据自动拓扑检查

    ArcGIS案例学习笔记-CAD数据自动拓扑检查 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 功能:针对CAD数据,自动进行拓扑检查 优点:类别:地理建模项目实例 ...