版权声明:转载请注明出处,谢谢! https://blog.csdn.net/Quincuntial/article/details/59109447

1. Parameters

solver.prototxt文件是用来告诉caffe如何训练网络的。solver.prototxt的各个参数的解释如下:

  • base_lr 
    这个参数是用来表示网络的初始学习率的。这个值是一个浮点型实数。
  • lr_policy 
    这个参数是用来表示学习率随着时间是如何变化的。值是字符串,需要加""。学习率变化的可选参数有: 
    “step”——需要设置stepsize。根据gamma参数和stepsize参数来降低学习率,base_lr * gamma ^ (floor(iter / stepsize))iter是当前迭代次数。学习率每迭代stepsize次变化一次。 
    “multistep”——与step类似,需要设置stepvalue,学习率根据stepvalue进行变化。 
    “fixed”——学习率base_lr保持不变。 
    “inv”——学习率变化公式为base_lr * (1 + gamma * iter) ^ (- power) 
    “exp”——学习率变化公式为base_lr * gamma ^ iter} 
    “poly”——学习率以多项式形式衰减,到最大迭代次数时降为0。学习率变化公式为base_lr * (1 - iter/max_iter) ^ (power)。 
    “sigmoid”——学习率以S型曲线形式衰减,学习率变化公式为base_lr * (1 / (1 + exp(-gamma * (iter - stepsize))))
  • gamma 
    这个参数表示学习率每次的变化程度,值为实数。
  • stepsize 
    这个参数表示什么时候应该进行训练的下一过程,值为正整数。主要用在lr_policystep的情况。
  • stepvalue 
    这个参数表示什么时候应该进行训练的下一过程,值为正整数。主要用在lr_policymultistep的情况。
  • max_iter 
    这个参数表示训练神经网络迭代的最大次数,值为正整数。
  • momentum 
    这个参数表示在新的计算中要保留的前面的权重数量,值为真分数,通常设为0.9。
  • weight_decay 
    这个参数表示对较大权重的惩罚(正则化)因子。值为真分数。 
    This parameter indicates the factor of (regularization) penalization of large weights. This value is a often a real fraction.
  • solver_mode 
    这个参数用来表示求解神经网络的模式——值为CPU or GPU。
  • snapshot 
    这个参数用来表示每迭代多少次就应该保存snapshot的modelsolverstate,值为正整数。
  • snapshot_prefix: 
    这个参数用来表示保存snapshot时modelsolverstate的前缀,值为带引号的字符串。
  • net: 
    这个参数表示训练网络所在的位置,值为带引号的字符串。
  • test_iter 
    这个参数表示 
    这个参数表示每个test_interval进行多少次test迭代,值为正整数。
  • test_interval 
    这个参数表示什么时候进行数据的测试,值为正整数。
  • display 
    这个参数用来表示什么时候将输出结果打印到屏幕上,值为正整数,表示迭代次数。
  • type 
    这个参数表示训练神经网络采用的反向传播算法,值为带引号的字符串。可选的值有: 
    Stochastic Gradient Descent “SGD”——随机梯度下降,默认值。 
    AdaDelta “AdaDelta”——一种”鲁棒的学习率方法“,是基于梯度的优化方法。 
    Adaptive Gradient “AdaGrad”——自适应梯度方法。 
    Adam “Adam”——一种基于梯度的优化方法。 
    Nesterov’s Accelerated Gradient “Nesterov”——Nesterov的加速梯度法,作为凸优化中最理想的方法,其收敛速度非常快。 
    RMSprop “RMSProp”——一种基于梯度的优化方法。

2. Demo

  • lr_policy
# lr_policy为multisetp
base_lr: 0.01
momentum: 0.9
lr_policy: "multistep"
gamma: 0.9
stepvalue: 1000
stepvalue: 2000
stepvalue: 3000
stepvalue: 4000
stepvalue: 5000 # lr_policy为step
base_lr: 0.01
momentum: 0.9
lr_policy: "step"
gamma: 0.9
stepsize: 1000
  • solver.prototxt
net: "models/bvlc_alexnet/train_val.prototxt"
# 每次测试时进行1000次迭代
test_iter: 1000
# 每进行1000次训练执行一次测试
test_interval: 1000
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_train"
solver_mode: GPU

参考资料

  1. http://www.cnblogs.com/denny402/p/5074049.html
  2. https://github.com/BVLC/caffe/wiki/Solver-Prototxt
  3. http://stackoverflow.com/questions/30033096/what-is-lr-policy-in-caffe

Caffe的solver参数介绍的更多相关文章

  1. Caffe的Solver参数设置

    Caffe的solver参数设置 http://caffe.berkeleyvision.org/tutorial/solver.html solver是通过协调前向-反向传播的参数更新来控制参数优化 ...

  2. Caffe常用层参数介绍

    版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Cheese_pop/article/details/52024980 DATA crop:截取原图像中一个 ...

  3. caffe之solver.prototxt文件参数设置

    caffe solver参数意义与设置 batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片:则,如果你的总图片张数为1 ...

  4. [转]caffe中solver.prototxt参数说明

    https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...

  5. caffe(7) solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  6. 【深度学习】之Caffe的solver文件配置(转载自csdn)

    原文: http://blog.csdn.net/czp0322/article/details/52161759 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是mode ...

  7. 利用Caffe训练模型(solver、deploy、train_val)+python使用已训练模型

    本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可 ...

  8. 利用Caffe训练模型(solver、deploy、train_val) + python如何使用已训练模型

    版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/5 ...

  9. 【转】Caffe的solver文件配置

    http://blog.csdn.net/czp0322/article/details/52161759 solver.prototxt 今天在做FCN实验的时候,发现solver.prototxt ...

随机推荐

  1. 【LOJ】 #2308. 「APIO2017」商旅

    题解 分数题可以想到分数规划,我们预处理出从i到j卖什么货物赚的最多,然后把每条边的边权改成"利润 - 效率 × 时间" 用spfa找正环即可 代码 #include <bi ...

  2. 【LOJ】#2071. 「JSOI2016」最佳团体

    题解 01分数规划,二分加树背包-- 代码 #include <bits/stdc++.h> #define enter putchar('\n') #define space putch ...

  3. ubuntu下spark安装配置

    一.安装vmware虚拟机 二.在虚拟机上安装ubuntu12.04操作系统 三.安装jdk1.8.0_25 http://www.oracle.com/technetwork/java/javase ...

  4. Javascript中Object常用方法学习

    1.Object.assign 函数(对象)(JavaScript) 将来自一个或多个源对象中的值复制到一个目标对象.语法: Object.assign(target, ...sources ); 此 ...

  5. SNMP代理软件开发

    SNMP代理模块包括6个子模块: SNMP协议主要有五种报文get.get-next.set.get-response,trap.l.get-request操作:从代理进程处提取一个或多个参数值2.g ...

  6. Scrum:The Definition of Done —— 作业有没有写完呢?

    Scrum:The Definition of Done -- 作业有没有写完呢?_苗得雨_新浪博客 http://blog.sina.com.cn/s/blog_59450ffc0102eiai.h ...

  7. spring cloud 学习(5) - config server

    分布式环境下的统一配置框架,已经有不少了,比如百度的disconf,阿里的diamand.今天来看下spring cloud对应的解决方案: 如上图,从架构上就可以看出与disconf之类的有很大不同 ...

  8. 领域Model?

    前言 领域驱动设计里有很多东西,我们可以应用在各种各样的开发模式里,所以接下来说的一些东西,我们可以部分使用. 说道领域驱动的领域,大家肯定就要开始说Bounded Context,聚合,聚合根,容易 ...

  9. TVB三个台

    翡翠台http://token.tvb.com/stream/live/hls/mobilehd_jade.smil 高清翡翠,http://token.tvb.com/stream/live/hls ...

  10. Asp.net core使用IIS在windows上进行托管

    摘要 最近项目中,尝试使用asp.net core开发,在部署的时候,考虑现有硬件,只能部署在windows上,linux服务器暂时没有. 部署注意事项 代码中启用iis和Kestrel public ...