题目描述

Farmer John continues his never-ending quest to keep the cows fit by having them exercise on various cow paths that run through the pastures. These cow paths can be represented as a set of vertices connected with bidirectional edges so that each pair of vertices has exactly one simple path between them. In the abstract, their layout bears a remarkable resemblance to a tree. Surprisingly, each edge (as it winds its way through the pastures) has the same length.

For any given set of cow paths, the canny cows calculate the longest possible distance between any pair of vertices on the set of cowpaths and call it the pathlength. If they think this pathlength is too large, they simply refuse to exercise at all.

Farmer John has mapped the paths and found V (2 <= V <= 100,000) vertices, conveniently numbered from 1..V. In order to make shorter cowpaths, he can block the path between any two vertices, thus creating more sets of cow paths while reducing the pathlength of both cowpath sets.

Starting from a single completely connected set of paths (which have the properties of a tree), FJ can block S (1 <= S <= V-1) paths, creating S+1 sets of paths. Your goal is to compute the best paths he can create so that the largest pathlength of all those sets is minimized.

Farmer John has a list of all V-1 edges in his tree, each described by the two vertices A_i (1 <= A_i <= V) and B_i (1 <= B_i <= V; A_i != B_i) that it connects.

Consider this rather linear cowpath set (a tree with 7 vertices):

1---2---3---4---5---6---7

If FJ can block two paths, he might choose them to make a map like this:

1---2 | 3---4 | 5---6---7 where the longest pathlength is 2, which would be the answer in this case. He can do no better than this.

TIME LIMIT: 2 seconds

MEMORY LIMIT: 32 MB

Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑。这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径。简单的说来, 这些点的布局就是一棵树,且每条边等长,都为1。 对于给定的一个奶牛路径集合,精明的奶牛们会计算出任意点对路径的最大值, 我们称之为这个路径集合的直径。如果直径太大,奶牛们就会拒绝锻炼。 Farmer John把每个点标记为1..V (2 <= V <= 100,000)。为了获得更加短 的直径,他可以选择封锁一些已经存在的道路,这样就可以得到更多的路径集合, 从而减小一些路径集合的直径。 我们从一棵树开始,FJ可以选择封锁S (1 <= S <= V-1)条双向路,从而获得 S+1个路径集合。你要做的是计算出最佳的封锁方案,使得他得到的所有路径集合 直径的最大值尽可能小。 Farmer John告诉你所有V-1条双向道路,每条表述为:顶点A_i (1 <= A_i <= V) 和 B_i (1 <= B_i <= V; A_i!= B_i)连接。

输入输出格式

输入格式:

* Line 1: Two space separated integers: V and S

* Lines 2..V: Two space separated integers: A_i and B_i

输出格式:

* Line 1: A single integer that is the best maximum pathlength FJ can achieve with S blocks

输入输出样例

输入样例#1:

7 2
6 7
3 4
6 5
1 2
3 2
4 5
输出样例#1:

2

Solution:

  本题二分答案+贪心。

  模拟考试的T3,思路不是很难。

  我们二分子树的最大直径$mid$,然后遍历原树,将当前根节点的子节点到叶子节点的距离$dis[x]$进行从大到小排序,贪心的删掉最大边,直到最大的两个$dis$值相加不大于$mid$为止(不合法情况各耗费一次割边机会),每个子树返回当前合法的最大的$dis$值,对该过程递归,最后比较割边的次数和s。

  那么时间复杂度$O(n\log ^2 n)$。

代码:

/*Code by 520 -- 10.18*/
#include<bits/stdc++.h>
#pragma GCC optimize(2)
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=1e6+;
int n,k,fa[N],to[N],net[N],h[N],cnt;
int dis[N>>],l,r,mid,ans,tot;
int root,rd[N>>];
bool vis[N>>]; int gi(){
int a=;char x=getchar();
while(x<''||x>'') x=getchar();
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt,rd[v]++;} void pre(int u){
for(RE int i=h[u];i;i=net[i])
if(to[i]!=fa[u]) fa[to[i]]=u,pre(to[i]);
} int stk[N],top;
void dfs(int u){
int bot=top;
for(RE int i=h[u];i;i=net[i])
if(to[i]!=fa[u]) {
dfs(to[i]);
stk[++top]=dis[to[i]]+;
}
sort(stk+bot+,stk+top+); int i;
for(i=top;i>bot;i--)
if(stk[i]>mid||i>bot+&&stk[i]+stk[i-]>mid) tot++;
else break;
dis[u]=(i==bot?:stk[i]);
top=bot;
} il bool check(){
tot=,dfs(root);
return tot<=k;
} int main(){
n=gi(),k=gi(); int u,v;
For(i,,n) u=gi(),v=gi(),add(u,v),add(v,u);
root=rand()%n+;
pre(root);
l=,r=n;
while(l<=r){
mid=l+r>>;
if(check()) ans=mid,r=mid-;
else l=mid+;
}
cout<<ans;
return ;
}
 
 
 

P3000 [USACO10DEC]牛的健美操Cow Calisthenics的更多相关文章

  1. 【luoguP3000】 [USACO10DEC]牛的健美操Cow Calisthenics

    题目链接 二分答案,判断需要断几条边,用\(f[i]\)表示以\(i\)为根的子树断边后的最长路径,对于一个点\(u\),存在\(f[v]>mid\)时就删到\(v\)的边\(f[v1]+f[v ...

  2. bzoj1648 / P2853 [USACO06DEC]牛的野餐Cow Picnic

    P2853 [USACO06DEC]牛的野餐Cow Picnic 你愿意的话,可以写dj. 然鹅,对一个缺时间的退役选手来说,暴力模拟是一个不错的选择. 让每个奶牛都把图走一遍,显然那些被每个奶牛都走 ...

  3. bzoj1623 / P2909 [USACO08OPEN]牛的车Cow Cars

    P2909 [USACO08OPEN]牛的车Cow Cars 显然的贪心. 按速度从小到大排序.然后找车最少的车道,查询是否能填充进去. #include<iostream> #inclu ...

  4. bzoj1604 / P2906 [USACO08OPEN]牛的街区Cow Neighborhoods

    P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 考虑维护曼哈顿距离:$\left | x_{1}-x_{2} \right |+\left | y_{1}-y_{2} ...

  5. 洛谷——P1821 [USACO07FEB]银牛派对Silver Cow Party

    P1821 [USACO07FEB]银牛派对Silver Cow Party 题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently ...

  6. P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    P2966 [USACO09DEC]牛收费路径Cow Toll Paths 题目描述 Like everyone else, FJ is always thinking up ways to incr ...

  7. 洛谷P1522 牛的旅行 Cow Tours

    ---恢复内容开始--- P1522 牛的旅行 Cow Tours189通过502提交题目提供者该用户不存在标签 图论 USACO难度 提高+/省选-提交该题 讨论 题解 记录 最新讨论 输出格式题目 ...

  8. LCA【洛谷P2971】 [USACO10HOL]牛的政治Cow Politics

    P2971 [USACO10HOL]牛的政治Cow Politics 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向 ...

  9. 编程算法 - 最好牛线(Best Cow Line) 代码(C)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u012515223/article/details/37909933 最好牛线(Best Cow L ...

随机推荐

  1. 20155218《网络对抗》MSF基础应用

    20155218<网络对抗>MSF基础应用 实验过程 1.一个主动攻击实践,如ms08_067; 首先使用 search ms08_067查询一下该漏洞: show target 查看可以 ...

  2. 20155223 Exp9 Web安全基础实践

    20155223 Exp9 Web安全基础实践 基础问题回答 SQL注入攻击原理,如何防御? 攻击原理:SQL注入即是指web应用程序对用户输入数据的合法性没有判断,攻击者可以在web应用程序中事先定 ...

  3. # 2017-2018-2 20155231《网络对抗技术》实验九: Web安全基础实践

    2017-2018-2 20155231<网络对抗技术>实验九: Web安全基础实践 实验要求: 本实践的目标理解常用网络攻击技术的基本原理.Webgoat实践下相关实验. 实验内容: ( ...

  4. 20155308《网络对抗》Exp8 Web基础

    20155308<网络对抗>Exp8 Web基础 实践原理与实践说明 本实践的具体要求有: (1).Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与P ...

  5. Kubernetes学习之路(二十三)之资源指标和集群监控

    目录 1.资源指标和资源监控 2.Weave Scope监控集群 (1)Weave Scope部署 (2)使用 Scope (3)拓扑结构 (4)实时资源监控 (5)在线操作 (6)强大的搜索功能 2 ...

  6. zabbix问题之snmp监控端口流量断图

    zabbix之snmp监控端口断图问题 在使用zabbix的snmp方式的监控端口流量时,某一个图总是断断续续的(被监控设备有较大的端口流量),经常会出现几分钟内没有图像的问题. 端口流量断图原因: ...

  7. storm从入门到放弃(三),放弃使用 StreamId 特性

    序:StreamId是storm中实现DAG有向无环图的重要一个特性,但是从实际生产环境来看,这个功能其实蛮影响生产环境的稳定性的,我们系统在迭代时会带来整体服务的不可用. StreamId是stor ...

  8. proe工程图输出dwg/dxf文件设置

    网上看到不少人分享proe转转dxf/dwg配置文件的,但是看了一圈,几乎都没有涉及到转化线型的,所以自己整理自己的配置文件,写在这里分享出来. 以Pro/engineer WF5.0为例: 1.复制 ...

  9. 用10分钟,搭建图像处理编程环境,0失败!(python语言,windows系统)

    以前,你可能看过很多的文章,开始搭建一个图像处理的编程环境. 结果,按照教程一步一步做的时候,总是出现各种各样的问题. 就算成功了,后续开发过程中要用到不同版本的opencv,不同版本python,更 ...

  10. unity过场动画组件Timeline

    Timeline是Unity2017版本中新加入的功能,可以非常方便的进行场景动画的创建和修改,包括物体.声音.粒子.动画.特效.自定义Playable以及子Timeline等多种资源进行整合,从而能 ...