PTA (Advanced Level) 1003 Emergency
Emergency
As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.
Input Specification:
Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (≤) - the number of cities (and the cities are numbered from 0 to N−1), M- the number of roads, C1 and C2 - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1, c2 and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1 to C2.
Output Specification:
For each test case, print in one line two numbers: the number of different shortest paths between C1 and C2, and the maximum amount of rescue teams you can possibly gather. All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.
Sample Input:
5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1
Sample Output:
2 4
题目解析
本题有若干个城市与若干条连接城市的道路,每个城市中会有一定数量的救援队,要求解初给出两城市之间的最短路条数,并求出在最短路的情况下所能聚集的救援队的最大数量。
第一行给出4个正整数,分别为N(<=500)-城市数量(城市编号由0 ~ N-1,M-道路的条数,C1、C2 – 给出的两个城市。第二行给出N个整数,分别为第0 ~ N-1号城市所拥有的救援队数量。之后给随M行表示道路信息,每行包括道路两端的城市c1、 c2 与道路长度L。
由于城市最高数量只有500,所以可以之间用一个二维数组来储存道路信息,用一维数组teamCnt储存每个城市所拥有的救援队数量,vector<int>pre[i] 存储i城市的前驱城市,之后dijkstra获取每个城市的前驱,这样便可以构建出一张由最短路径组成的邻接表。之后dfs这张邻接表获取C1到C2的最短路径数量与最多课聚集救援队数量即可。
#include <bits/stdc++.h>
using namespace std;
const int MAX = ;
int n, m, c1, c2;
int G[MAX][MAX];
int teamCnt[MAX];
int d[MAX];
bool vis[MAX] = {false};
vector<int> pre[MAX];
void dijkstra(int bg){
fill(d, d + n, INT_MAX); //初始化起点到任何点的距离都为正无穷
d[bg] = ; //起点到本身的距离为0
for(int i = ; i < n ; i++){
int minCity = -, minDis = INT_MAX;
//minCity保存最近的城市 minDis保存最近的距离
for(int j = ; j < n; j++){ //找到当前还未访问过的距离起点最近的城市
if(d[j] < minDis && !vis[j]){
minDis = d[j];
minCity = j;
}
}
if(minCity == -) //若minCity为-1证明其他城市都不与起点连通
return;
vis[minCity] = true; //将找出的最近城市标记为已访问
for(int next = ; next < n; next++){ //遍历所有点
if(!vis[next] && d[next] > d[minCity] + G[minCity][next] && G[minCity][next] != ){
//若存在未访问的点next 与起点之间的距离可被minCity优化 优化该点
d[next] = d[minCity] + G[minCity][next];
pre[next].clear();
pre[next].push_back(minCity);
//将next的前驱清空并将minCity计入next的前驱
}else if(!vis[next] && d[next] == d[minCity] + G[minCity][next] && G[minCity][next] != ){
//若存在未访问的点next 与起点之间的距离和以minCity为中转的距离相等
pre[next].push_back(minCity);
//将minCity计入next的前驱
}
}
}
}
int maxTeamCnt = INT_MIN;
//记录最大聚集救援队数量
int roadCnt = ;
//记录最短路数量
void dfs(int ed, int nowTeamCnt){ //由终点向起点搜索 nowTeamCnt表示当前聚集的救援队数量
if(ed == c1){ //若搜索到起点
maxTeamCnt = max(maxTeamCnt, nowTeamCnt); //获取最大聚集数量
roadCnt++; //最短路加一
}
for(auto i : pre[ed]){ //遍历ed的前驱
if(!vis[i]){ //若前驱还每有被计入道路
vis[i] = true;
dfs(i, nowTeamCnt + teamCnt[i]);
vis[i] = false;
}
}
}
int main()
{
scanf("%d%d%d%d", &n, &m, &c1, &c2);
//输入城市数量n 道路数量m 要计算最短路的城市c1与c2
for(int i = ; i < n; i++) //输入每个城市的救援队数量
scanf("%d", &teamCnt[i]);
memset(G, , sizeof(G)); //初始化任意两个城市之间距离为0
for(int i = ; i < m; i++){ //输入道路信息
int u, v;
scanf("%d%d", &u, &v);
scanf("%d", &G[u][v]);
G[v][u] = G[u][v];
}
dijkstra(c1); //最短路以c1为起点获取前驱
memset(vis, false, sizeof(vis));
dfs(c2, teamCnt[c2]);
printf("%d %d\n", roadCnt, maxTeamCnt);
return ;
}
PTA (Advanced Level) 1003 Emergency的更多相关文章
- PAT (Advanced level) 1003. Emergency (25) Dijkstra
As an emergency rescue team leader of a city, you are given a special map of your country. The map s ...
- PAT (Advanced Level) 1003. Emergency (25)
最短路+dfs 先找出可能在最短路上的边,这些边会构成一个DAG,然后在这个DAG上dfs一次就可以得到两个答案了. 也可以对DAG进行拓扑排序,然后DP求解. #include<iostrea ...
- PTA(Advanced Level)1036.Boys vs Girls
This time you are asked to tell the difference between the lowest grade of all the male students and ...
- PTA (Advanced Level) 1004 Counting Leaves
Counting Leaves A family hierarchy is usually presented by a pedigree tree. Your job is to count tho ...
- PTA (Advanced Level) 1020 Tree Traversals
Tree Traversals Suppose that all the keys in a binary tree are distinct positive integers. Given the ...
- PTA(Advanced Level)1025.PAT Ranking
To evaluate the performance of our first year CS majored students, we consider their grades of three ...
- PTA (Advanced Level) 1009 Product of Polynomials
1009 Product of Polynomials This time, you are supposed to find A×B where A and B are two polynomial ...
- PTA (Advanced Level) 1008 Elevator
Elevator The highest building in our city has only one elevator. A request list is made up with Npos ...
- PTA (Advanced Level) 1007 Maximum Subsequence Sum
Maximum Subsequence Sum Given a sequence of K integers { N1, N2, ..., NK }. A continuous su ...
随机推荐
- java基础-day26
第03天 java基础加强 今日内容介绍 u BeanUtils概述及使用 u XML简介及约束 u XML解析 第1章 XML简介 1.1 XML基本语法 1.1.1 XML概述 XML全称为 ...
- nodejs mongodb 数据库封装DB类 -转
使用到了nodejs的插件mongoose,用mongoose操作mongodb其实蛮方便的. 关于mongoose的安装就是 npm install -g mongoose 这个DB类的数据库配置是 ...
- jenkins+maven+svn构建项目,及远程部署war包到tomcat上
要使用jenkins构建项目,当然要使用jenkins了,我使用的war版本的jenkins jenkins的官网 http://jenkins-ci.org/ 点击latest下载,但是可能因为天朝 ...
- codeforces 455E
题目:http://codeforces.com/problemset/problem/455/E 题意:给定数组a,及f的定义: f[1][j] = a[j]; 1 <= j <= n ...
- 一些仪器的解码程序(delphi)
http://www.jiandande.com/html/ITzixun-jishu/Lisyanjiuyuan/2013/0204/1600_3.html 看了后觉得不错,可能有需要的 ----- ...
- zabbix已恢复正常,但是报警信息一直出现,求大佬解答。
手动关闭时提醒如下:无法确认问题,事件不是问题状态 模板设置是允许手动关闭,内网机器,ping没有问题.
- socket粗解
百度定义:网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. Socket通信流程: 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一 ...
- [WPF]为旧版本的应用添加触控支持
之前做WPF开发时曾经遇到这样一个需求:为一个基于 .NET Framework 3.5开发的老旧WPF程序添加触控支持,以便于大屏触控展示. 接手之后发现这是一个大坑. 项目最初的时候完全没考虑过软 ...
- Windows下安装配置爬虫工具Scrapy及爬虫环境
爬虫工具Scrapy在Mac和Linux环境下都相对好装,但是在Windows上总会碰到各种莫名其妙的问题.本文记录下Scrapy在Window上的安装过程. 本文是基于Python2.7及Windo ...
- jsp的两个include了解
在jsp中三大指令(page -- include -- taglib)中有一个 include 然后再三个动作标签中(include -- forward -- param)中也有一个includ ...