luogu2634
P2634 [国家集训队]聪聪可可
题目描述
聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。
他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。
聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
输入格式
输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。
输出格式
以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。
输入输出样例
5
1 2 1
1 3 2
1 4 1
2 5 3
13/25
说明/提示
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。
【数据规模】
对于100%的数据,n<=20000。
sol:树形dp即可,也可以点分(很久前写的(大雾,dp[i][j]表示以i为根的子树中到i的和%i=j的个数
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=; bool f=; char ch=' ';
while(!isdigit(ch)) {f|=(ch=='-'); ch=getchar();}
while(isdigit(ch)) {s=(s<<)+(s<<)+(ch^); ch=getchar();}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<) {putchar('-'); x=-x;}
if(x<) {putchar(x+''); return;}
write(x/); putchar((x%)+'');
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=,M=;
int n,dp[N][],ans=;
int tot=,Next[M],to[M],val[M],head[N];
inline void Link(int x,int y,int z){Next[++tot]=head[x]; to[tot]=y; val[tot]=z; head[x]=tot;}
inline void dfs(int x,int fat)
{
int e,i,j;
dp[x][]=; dp[x][]=dp[x][]=;
for(e=head[x];e;e=Next[e]) if(to[e]!=fat)
{
dfs(to[e],x);
for(i=;i<;i++)
{
ans+=dp[x][i]*dp[to[e]][(-i-val[e])%]*;
}
for(i=;i<;i++)
{
dp[x][(i+val[e])%]+=dp[to[e]][i];
}
}
// cout<<x<<' '<<dp[x][0]<<' '<<dp[x][1]<<' '<<dp[x][2]<<endl;
}
int main()
{
int i,x,y,z;
R(n);
for(i=;i<n;i++)
{
R(x); R(y); z=read()%; Link(x,y,z); Link(y,x,z);
}
dfs(,);
ans+=n;
int gg=__gcd(n*n,ans);
write(ans/gg); putchar('/'); Wl(n*n/gg);
return ;
}
/*
input
5
1 2 1
1 3 2
1 4 1
2 5 3
output
13/25
*/
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=,M=,inf=0x3f3f3f3f;
int n,re=,tot=,Next[M],to[M],val[M],head[M],rt,sum,sz[N],pp[N],arr[N],tong[],gg;
inline void add(int x,int y,int z){Next[++tot]=head[x];to[tot]=y;val[tot]=z;head[x]=tot;}
inline int gcd(int x,int y){return (y==)?x:gcd(y,x%y);}
inline void getrt(int x,int fa)
{
int i; sz[x]=; pp[x]=;
for(i=head[x];i;i=Next[i])
{
if(!arr[to[i]]&&to[i]!=fa){getrt(to[i],x); sz[x]+=sz[to[i]]; pp[x]=max(pp[x],sz[to[i]]);}
}pp[x]=max(pp[x],sum-pp[x]); if(pp[x]<pp[rt])rt=x;
}
inline void dfs(int x,int fa,int pre)
{
tong[pre]++; int i;
for(i=head[x];i;i=Next[i])
{
if(to[i]!=fa&&!arr[to[i]])dfs(to[i],x,(pre+val[i])%);
}
}
inline void calc(int x,int op,int v)
{
tong[]=tong[]=tong[]=; dfs(x,,v%); re+=op*(*tong[]*tong[]+tong[]*tong[]+tong[]+tong[]);
}
inline void solve(int x)
{
int i; arr[x]=; calc(x,,);
for(i=head[x];i;i=Next[i])
{
if(!arr[to[i]])
{
calc(to[i],-,val[i]); sum=sz[to[i]]; pp[rt=]=inf; getrt(to[i],); solve(rt);
}
}
}
int main()
{
int i,x,y,z; scanf("%d",&n); sum=pp[rt=]=n;
for(i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z); add(x,y,z); add(y,x,z);
}getrt(,); solve(rt); gg=gcd(re,n*n); printf("%d/%d\n",re/gg,n*n/gg);
}
点分
luogu2634的更多相关文章
- luogu2634 聪聪可可 (树形dp)
要求出两点间距离==0(mod3) 的数量,然后除以(n*n) 设f[i][j]为i的子树到i的距离==j(mod3)的数量,然后做树形dp即可 因为要最简,所以要求一下gcd,然后除下去 #incl ...
- luogu2634 聪聪可可
点分治裸题 #include <iostream> #include <cstdio> using namespace std; int n, uu, vv, ww, ans, ...
随机推荐
- 【hash】Seek the Name, Seek the Fame
[哈希和哈希表]Seek the Name, Seek the Fame 题目描述 The little cat is so famous, that many couples tramp over ...
- Java String类源码
String类的签名(JDK 8): public final class String implements java.io.Serializable, Comparable<String&g ...
- hdu 6047
题解:先对b排序,用一个数组预处理a,记录当前位置之后到n的最大值,然后在用一个变量维护新增变量的最大值,用的时候和前面的数组的最大值做一个比较就ok. AC代码: #include <cstd ...
- hdu 1151 最小路径覆盖
先说说最小路径覆盖的定义 定义:在一个有向图中,找出最少的路径,使得这些路径,经过每一个点,且每一个点只与一条路径相关联, 由上面得出: 1.一个单独的点是一个路径 2:如果有路径a,b,c....f ...
- Inno Setup CreateProcess 失败:代码 740(Inno Setup打包的程序提升为管理员权限)
原文参考 https://www.cnblogs.com/SnailProgramer/p/4243666.html http://blog.csdn.net/x356982611/article/d ...
- C# switch语句的使用
1 今天我们来学习switch 语句的使用,switch 语句和if else 类似 switch 语句主要的作用是用于来判断在规定条件下 根据你的选择来执行switch 语句下面case :的 ...
- [转载]为什么jar包中能看见源码
[转载]为什么jar包中能看见源码 这个也是我之前发现过的一个现象,只是之前没有研究过.今天正好在知乎看见,总结一下: 对于Maven或者Gradle项目,依赖的部分会自动从远程仓库下载源码 生成的j ...
- vue runtime报错问题
Webpack中导入vue和普通网页中导入vue的区别1. 普通网页导入vue方式 <script></script> 2. Webpack导入vue方式 Import Vue ...
- 【转】CSS之Background-Position left right center top bottom属性
background-position:left top; 背景图片的左上角和容器(container)的左上角对齐,超出的部分隐藏. 等同于 background-position:0,0; 也等同 ...
- 开源跨境ERP - 小老板 Docker/Docker Compose一键部署
先上部署成功后的截图,各个菜单点击均无报错 DockerCompose 包含: 1. 三个mysql5.7数据库 2. redis php会话存储+ memcached 3. 小老板php主程序 do ...