首先$O(n^2\log n)$暴力很好想,直接每个点出发跑一遍最短路,排$dis$统计一下即可。
考虑怎么优化。
发现$rank$很小,考虑从$rank$入手。
换一种统计方法,看每个点$x$如果作为别的点的兴趣点,可能产生多少贡献。
那么别的点$i$到他的最短距离设为$dis_i$,$i$到所有$rank_x+1$的点里面最短的距离是$f_{i,rank_x+1}$,那么肯定只有$dis_i<f_{i,rank_x+1}$的时候才产生一次贡献。所以我们可以先从大的$rank$的点开始枚举跑单源最短路,计算他对所有点的贡献。
那么这里设$f_{x,r}$表示点$x$和所有$rank$为$r$(或者$\ge r$,因为这个是单调的)的点里距离最近的是多远。统计总答案。
但是复杂度并没有变啊。。。`````
事实上,这个复杂度确实没有办法优化了,但是,观察题目字眼,会发现题目善意的告诉了我们总贡献$\le 30n$。也就是说,真正在跑最短路的时候有效的$dis_i<f_{i,rank_x+1}$点就那么多个,必须尽可能排除没有贡献的点,只把有贡献的统计到。
发现,在以$s$跑dij的时候,若在$x$点去松弛了$y$,但是此时$dis_y\ge f_{y,rank_s+1}$,也就是$y$不可能对他感兴趣,那么即使$y$入堆后又去松弛了$z$,也不可能产生贡献并更新$f_{z,rank_s}$。因为:
$$
dis_z\ge dis_y+w_{y,z}\ge f_{y,rank_s+1}+w_{y,z}\ge f_{z,rank_z+1}
$$
通过这个连续不等关系,当松弛$y$的时候不满足产生贡献的判断式,就不要入堆了。这样,我们只有会产生贡献的点入堆,无贡献的点就不进了。虽然理论复杂度不变,但根据题目对于答案的保证,所以这题可通过。
反正我是没想到这个优化。。太神仙了。。
可能会注意到代码里面memset最多用了$30000$次,这个不会T吗。。不会,实际测试发现memset常数小的一批,n方过十万,可能是因为memset的字节填写比手动赋值快很多。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define dbg(x) cerr << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,M=+;
struct thxorz{int to,nxt,w;}G[M<<];
int Head[N],tot;
vector<int>rk[];
int n,m,ans;
inline void Addedge(int x,int y,int z){
G[++tot].to=y,G[tot].nxt=Head[x],Head[x]=tot,G[tot].w=z;
G[++tot].to=x,G[tot].nxt=Head[y],Head[y]=tot,G[tot].w=z;
}
#define y G[j].to
int f[N][],dis[N];
priority_queue<pii,vector<pii>,greater<pii> >q;
inline void dij(int s,int r){
memset(dis,0x3f,sizeof dis);q.push(make_pair(dis[s]=,s));
while(!q.empty()){
int x=q.top().second,d=q.top().first;q.pop();
if(dis[x]^d)continue;
++ans,MIN(f[x][r],d);
for(register int j=Head[x];j;j=G[j].nxt)
if(MIN(dis[y],d+G[j].w)&&dis[y]<f[y][r+])q.push(make_pair(dis[y],y));
}
}
#undef y
int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(n),read(m);
for(register int i=,x;i<=n;++i)read(x),rk[x].push_back(i);
for(register int i=,x,y,z;i<=m;++i)read(x),read(y),read(z),Addedge(x,y,z);
memset(f,0x3f,sizeof f);
for(register int i=;i;--i){
for(register int j=;j<rk[i].size();++j)dij(rk[i][j],i);
for(register int j=;j<rk[i].size();++j)f[rk[i][j]][i]=;
for(register int j=;j<=n;++j)f[j][i-]=f[j][i];
}
return printf("%d\n",ans),;
}

反思:如果题目对于答案有相关的保证,优化可以从排除不可能,尽量统计到答案的角度来进行。例如本题要排除多余策略,必须发现第一次出现的不可能策略,以后都不可能推出可能的出来这个性质,而这个要靠猜想是不是由于只能统计答案那么次所以一旦有不产生贡献的冗枝立刻剪掉。最短路上点过多,尝试去掉不可能的。

luogu1261 服务器储存信息问题[最短路]的更多相关文章

  1. Luogu1261: 服务器储存信息问题

    题面 传送门 Sol 我们可以考虑每种\(rank\)的点\(u\)会被哪些点\(v\)感兴趣 如果\(dis[u][v]<\)所有满足\(rank\)大于\(rank[u]\)的点到\(v\) ...

  2. 查看Zookeeper服务器状态信息的一些命令

    1.Zookeeper服务器当前节点配置信息: echo conf|nc localhost 2181 2.cons:echo cons|nc localhost 2181 输出当前服务器所有客户端连 ...

  3. cat .git/config查看远端服务器信息(git的配置信息:远端服务器连接信息)

    本地git库中,查找其连接的远端服务器信息: 每个git库都会有一个配置信息文件.git/config. cat .git/config,可以看到信息如下: [core]         reposi ...

  4. MySQL优化:使用show status查看MySQL服务器状态信息

    在网站开发过程中,有些时候我们需要了解MySQL的服务器状态信息,譬如当前MySQL启动后的运行时间,当前MySQL的客户端会话连接数,当前MySQL服务器执行的慢查询数,当前MySQL执行了多少SE ...

  5. 使用 SHOW STATUS 查看mysql 服务器状态信息

    在LAMP架构的网站开发过程中,有些时候我们需要了解MySQL的服务器状态信息,譬如当前MySQL启动后的运行时间,当前MySQL的客户端会话连接数,当前MySQL服务器执行的慢查询数,当前MySQL ...

  6. 查看linux服务器内存信息

    查看服务器内存信息 dmidecode|grep -P -A5 "Memory\s+Device"|grep Size [root@localhost home]# dmideco ...

  7. MAR 27 解决华为手机访问Google Play:从服务器检索信息时出错。[DF-DFERH-01]

    虽然路由器已经设置了梯子,但是用华为手机访问Google Play时,还是提示:从服务器检索信息时出错.[DF-DFERH-01].   虽然在手机上把梯子设置成全局模式,连接Google Play后 ...

  8. 跨服务器查询信息的sql

    --跨服务器查询信息的sql: select * from openrowset( 'SQLOLEDB', '192.168.1.104'; 'sa'; '123.com',[AutoMonitorD ...

  9. 【MySQL优化】使用show status查看MySQL服务器状态信息

    在网站开发过程中,有些时候我们需要了解MySQL的服务器状态信息,譬如当前MySQL启动后的运行时间,当前MySQL的客户端会话连接数,当前MySQL服务器执行的慢查询数,当前MySQL执行了多少SE ...

随机推荐

  1. 解决 ThinkPHP 5 把控制器下的文件夹当做控制器输出的问题

    目录结构: application/home/controller/user_info/User.php 输入路由:/home/user_info/user/index 看样子没毛病,但会报错: 这是 ...

  2. linux-32bit-内存管理

    一.进程与内存 进程如何使用内存? 毫无疑问所有进程(执行的程序)都必须占用一定数量的内存,它或是用来存放从磁盘载入的程序代码,或是存放取自用户输入的数据等等.不过进程对这些内存的管理方式因内存用途不 ...

  3. IDEA里的git的使用

    1.将代码交由git管理 VCS  ——>  Enable Version Control Integration... 选择要使用的版本控制系统,选择Git  ——>  OK 2.将代码 ...

  4. Linux系列(5):入门之文件类型与扩展名

    通过本章你会了解到: 文件类型有哪些? 文件扩展名的意义是什么? 1.文件类型 任何设备在Linux系统中都是文件,不仅如此,连数据沟通的接口也有专属的文件在负责,所以Linux的文件种类真的很多,除 ...

  5. curl post请求封装

    /* POST /servlet/ICBCCMPAPIReqServlet?userID=jyi.y.1001&PackageID=201807311347539185&SendTim ...

  6. Centos7.3安装Oracle11.2.0.3

    1.创建用户用户组 [root@smallcloud ~]# groupadd oinstall [root@smallcloud ~]# groupadd dba [root@smallcloud ...

  7. 在Window Server 2016中使用Web Deploy方式发布.NET Web应用

    1.在IIS里面点击获取新的Web平台组件 2.下载Web平台组件并安装 3.在其中搜索Web Deploy,找到3.5版本,并安装 4.继续搜索Web Deploy 3.6版本,并安装 安装好之后, ...

  8. C# 添加log4net日志

    一.添加log4net的Nuget包 二.在Web.config或者App.config文件中添加log4net配置 代码: <log4net> <!-- OFF, FATAL, E ...

  9. 【ES6 】声明变量的方式

    var function let const import class

  10. 洛谷UVA11987Almost Union-Find题解--并查集的删除

    题目链接 https://www.luogu.org/problemnew/show/UVA11987 分析 分析下操作发现就是加了个删除操作的并查集,怎么做删除操作呢. 我们用一个\(id[]\)记 ...