思路:分治

提交:2次

错因:数组开小

题解:

我们枚举一下众数\(x\)。

设\(s[n]=\sum_{i=1}^n [a[i]==x]\)

那么对于区间\((l,r]\),有\(s[r]-s[l]>\frac{r-l}{2}\)

即\(2*s[r]-r>2*s[l]-l\)

考虑分治,我们求出所有过中点的区间\([l,r]\)的贡献。

如何求呢?首先观察一个性质,两个子区间的众数至少有1个是大区间的众数,反之亦然。

那么我们先求出子区间中的众数,作为大区间的可行众数。然后我们枚举每个可行众数,依次求出符合\(2*s[r]-r>2*s[l]-l\)的区间。

还有一个特别神的数组做法,可是我不会

代码:

#include<bits/stdc++.h>
#define ll long long
#define R register int
using namespace std;
namespace Luitaryi {
inline int g() { R x=0,f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*f;
} const int N=500010;
int n,a[N],pos[N],num[N],cnt[N*2]; ll ans;
inline void solve(int l,int r) {
if(l==r) {++ans; return ;} R md=l+r>>1,tot=0;
solve(l,md),solve(md+1,r);
for(R i=md;i>=l;--i) if(++cnt[a[i]]>(md-i+1)/2)
if(!pos[a[i]]) num[pos[a[i]]=++tot]=a[i];//左边的众数
for(R i=l;i<=r;++i) cnt[a[i]]=0;
for(R i=md+1;i<=r;++i) if(++cnt[a[i]]>(i-md)/2)
if(!pos[a[i]]) num[pos[a[i]]=++tot]=a[i];//右边的众数
for(R i=l;i<=r;++i) pos[a[i]]=0;
for(R i=l;i<=r;++i) cnt[a[i]]=0;
for(R i=1;i<=tot;++i) {//枚举可能的众数
R sum=r-l+1,mx=sum,mn=sum;//mn,mx记录桶的上下界,sum作为初值相当于偏移量
cnt[sum]=1; for(R j=l;j<md;++j) {//先处理出左边的桶
a[j]==num[i]?++sum:--sum;
mx=max(mx,sum),mn=min(mn,sum); ++cnt[sum];
} a[md]==num[i]?++sum:--sum;
for(R j=mn;j<=mx;++j) cnt[j]+=cnt[j-1];//前缀和。
for(R j=md+1;j<=r;++j) {//处理右边
a[j]==num[i]?++sum:--sum;
ans+=cnt[min(mx,sum-1)]; //求出顺序对个数
} for(R j=mn;j<=mx;++j) cnt[j]=0;
}
} inline void main() {
n=g(); g(); for(R i=1;i<=n;++i) a[i]=g();
solve(1,n); printf("%lld\n",ans);
}
} signed main() {Luitaryi::main(); return 0;}

2019.10.08

38

P4062 [Code+#1]Yazid 的新生舞会的更多相关文章

  1. luogu P4062 [Code+#1]Yazid 的新生舞会(线段树+套路)

    今天原来是平安夜啊 感觉这题是道好题. 一个套路枚举权值\(x\),把权值等于\(x\)的设为1,不等于的设为-1,然后问题转化为多少个区间权值和大于. 发现并不是很好做,还有一个套路,用前缀和查分来 ...

  2. 洛谷 P4062 - [Code+#1]Yazid 的新生舞会 的线性做法

    洛谷题面传送门 一个线性做法. \(n\log n\) 解法可以戳这里查看 首先回顾一下 \(n\log n\) 解法的过程:我们对于每一个数 \(x\),考察其出现位置,设为 \(t_1,t_2,t ...

  3. 洛谷 P4062 - [Code+#1]Yazid 的新生舞会(权值线段树)

    题面传送门 题意: 给出一个序列 \(a\),求 \(a\) 有多少个子区间 \([l,r]\),满足这个区间中出现次数最多的数出现次数 \(>\dfrac{r-l+1}{2}\) \(1 \l ...

  4. 【线段树】【P4062】 [Code+#1]Yazid 的新生舞会

    Description 给定一个长度为 \(n\) 的序列,求有多少子区间满足区间众数严格大于区间长度的一半.如果区间有多个出现次数最多且不同的数则取较小的数为众数. Limitation 对于全部的 ...

  5. [题解] [Code+#1]Yazid 的新生舞会

    题面 题解 upd : \(cnt_i\) 代表值为 \(i\) 的个数 我们可以暴力枚举众数 \(k\) 把等于 \(k\) 的赋值成 1 , 不等于 \(k\) 的赋值成 -1 这样原序列就变成了 ...

  6. 【BZOJ5110】[CodePlus2017]Yazid 的新生舞会 线段树

    [BZOJ5110][CodePlus2017]Yazid 的新生舞会 Description Yazid有一个长度为n的序列A,下标从1至n.显然地,这个序列共有n(n+1)/2个子区间.对于任意一 ...

  7. bzoj5110: [CodePlus2017]Yazid 的新生舞会

    Description Yazid有一个长度为n的序列A,下标从1至n.显然地,这个序列共有n(n+1)/2个子区间.对于任意一个子区间[l,r] ,如果该子区间内的众数在该子区间的出现次数严格大于( ...

  8. [loj 6253] Yazid的新生舞会

    (很久之前刷的题现在看起来十分陌生a) 题意: 给你一个长度为n的序列A,定义一个区间$[l,r]$是“新生舞会的”当且仅当该区间的众数次数严格大于$\frac{r-l+1}{2}$,求有多少子区间是 ...

  9. 【bzoj5110】Yazid的新生舞会

    这里是 $THUWC$ 选拔时间 模拟赛的时候犯 $SB$ 了,写了所有的部分分,然后直接跑过了 $4$ 个大样例(一个大样例是一个特殊情况)…… 我还以为我非常叼,部分分都写对了,于是就不管了…… ...

随机推荐

  1. Python入门学习——PyQt5程序基本结构

    在学习python GUI部分时,一开始看书有点懵,看不懂框架,以下是个人学习所得(参考了别人的视频讲解),错误之处,望大家指教 #0.导入需要的包和模块from PyQt5.Qt import * ...

  2. 05 多继承、object类

    多继承 Python中一个类可以继承多个父类,并且获得全部父类的属性和方法. class A: def demo(self): print("demo") class B: def ...

  3. Scratch(三)剪刀石头布

    经过上一讲的突击训练,我们从门外汉开始走向编程的深坑,我们今天还要对上一讲的游戏进行加强. 上一个游戏还能演变成什么游戏呢? 我其实知道你们想到的是老hu机什么的,确实,上一个游戏改改可以变成老hu机 ...

  4. (转)基于FFPMEG2.0版本的ffplay代码分析

    ref:http://zzhhui.blog.sohu.com/304810230.html 背景说明 FFmpeg是一个开源,免费,跨平台的视频和音频流方案,它提供了一套完整的录制.转换以及流化音视 ...

  5. Spring Cloud Alibaba学习笔记(5) - 整合Sentinel及Sentinel规则

    整合Sentinel 应用整合Sentinel 在dependencies中添加依赖,即可整合Sentinel <dependency> <groupId>com.alibab ...

  6. 递推问题 hdu 2046 与1143的比对

    2046 在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数.例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:   Input 输入数据由多行组成,每行 ...

  7. 在论坛中出现的比较难的sql问题:15(生成动态删除列语句 分组内多行转为多列)

    原文:在论坛中出现的比较难的sql问题:15(生成动态删除列语句 分组内多行转为多列) 所以,觉得有必要记录下来,这样以后再次碰到这类问题,也能从中获取解答的思路. 1.如果去掉这个临时表中合计为0 ...

  8. centos6克隆虚拟机后,网络无法访问和启动

    使用vmware安装centos6虚拟机时, 克隆虚拟机后无法访问网络. 原因是:产生了重复的网卡信息** 克隆后在70-persistent-net.rules文件中会多一行网卡信息,把第一行网卡信 ...

  9. Vue.js 教程 -- 实例讲解

    一. Vue.js是什么 Vue.js是一套构建用户界面(view)的MVVM框架.Vue.js的核心库只关注视图层,并且非常容易学习,非常容易与其他库或已有的项目整合. 1.1 Vue.js的目的 ...

  10. 使用node建立本地服务器访问静态文件

    最终目录结构 demo │ node_modules └───public │ │ index.html │ │ index.css │ └───index.js └───server.js 一.使用 ...