要求:计算hasgj表,计算每天新增mac数量。

因为spark直接扫描hbase表,对hbase集群访问量太大,给集群造成压力,这里考虑用spark读取HFile进行数据分析。

1、建立hasgj表的快照表:hasgjSnapshot

语句为:snapshot 'hasgj','hasgjSnapshot'

2、计算每天mac增量的代码如下:

package com.ba.sparkReadHbase.operatorHfile.hfileinputformat;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.NavigableMap;
import java.util.Set;
import java.util.Map.Entry;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.hbase.mapreduce.TableSnapshotInputFormat;
import org.apache.hadoop.hbase.protobuf.ProtobufUtil;
import org.apache.hadoop.hbase.protobuf.generated.ClientProtos;
import org.apache.hadoop.hbase.util.Base64;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.mapreduce.Job;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import scala.Tuple2; public class SparkReadHFile {
private static String convertScanToString(Scan scan) throws IOException {
ClientProtos.Scan proto = ProtobufUtil.toScan(scan);
return Base64.encodeBytes(proto.toByteArray());
} public static void main(String[] args) throws IOException {
final String date=args[0];
int max_versions = 3;
SparkConf sparkConf = new SparkConf().setAppName("sparkReadHfile");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
Configuration hconf = HBaseConfiguration.create();
hconf.set("hbase.rootdir", "/hbase");
hconf.set("hbase.zookeeper.quorum", "master,slave1,slave2");
Scan scan = new Scan();
scan.addFamily(Bytes.toBytes("ba"));
scan.setMaxVersions(max_versions);
hconf.set(TableInputFormat.SCAN, convertScanToString(scan));
Job job = Job.getInstance(hconf);
Path path = new Path("/snapshot");
String snapName ="hasgjSnapshot";
TableSnapshotInputFormat.setInput(job, snapName, path);
JavaPairRDD<ImmutableBytesWritable, Result> newAPIHadoopRDD = sc.newAPIHadoopRDD(job.getConfiguration(), TableSnapshotInputFormat.class, ImmutableBytesWritable.class,Result.class);
List<String> collect = newAPIHadoopRDD.map(new Function<Tuple2<ImmutableBytesWritable, Result>, String>(){
private static final long serialVersionUID = 1L;
public String call(Tuple2<ImmutableBytesWritable, Result> v1)
throws Exception {
// TODO Auto-generated method stub
String newMac =null;
Result result = v1._2();
if (result.isEmpty()) {
return null;
}
String rowKey = Bytes.toString(result.getRow());
//System.out.println("行健为:"+rowKey);
NavigableMap<byte[], byte[]> familyMap = result.getFamilyMap(Bytes.toBytes("ba"));
Set<Entry<byte[], byte[]>> entrySet = familyMap.entrySet();
java.util.Iterator<Entry<byte[], byte[]>> it = entrySet.iterator();
String colunNmae =null;
String minDate="34561213";
while(it.hasNext()){
colunNmae = new String(it.next().getKey());//列
if(colunNmae.compareTo(minDate)<0){
minDate=colunNmae;
}
} if (date.equals(minDate)) {
// row=rowKey.substring(4);
newMac=rowKey;
//ls.add(rowKey.substring(4));
//bf.append(rowKey+"----");
}
return newMac;
}
}).collect();
ArrayList<String> arrayList = new ArrayList<String>();
for (int i = 0; i < collect.size(); i++) {
if (collect.get(i) !=null) {
arrayList.add(collect.get(i));
}
}
System.out.println("新增mac数"+(arrayList.size())); }
}

3、特别说明:

hasgj表的表结构:

0000F470ABF3A587                          column=ba:20170802, timestamp=1517558687930, value=                                                                         
 0000F470ABF3A587                          column=ba:20170804, timestamp=1517593923254, value=                                                                         
 0000F470ABF3A587                          column=ba:20170806, timestamp=1517620990589, value=                                                                         
 0000F470ABF3A587                          column=ba:20170809, timestamp=1517706294758, value=                                                                         
 0000F470ABF3A587                          column=ba:20170810, timestamp=1517722369020, value=                                                                         
 0000F470ABF3A587                          column=ba:20170811, timestamp=1517796060984, value=                                                                         
 0000F470ABF3A587                          column=ba:20170816, timestamp=1517882948856, value=                                                                         
 0000F470ABF3A587                          column=ba:20170818, timestamp=1517912603602, value=                                                                         
 0000F470ABF3A587                          column=ba:20170819, timestamp=1517938488763, value=                                                                         
 0000F470ABF3A587                          column=ba:20170821, timestamp=1517989742180, value=                                                                         
 0000F470ABF3A587                          column=ba:20170827, timestamp=1518383470292, value=                                                                         
 0000F470ABF3A587                          column=ba:20170828, timestamp=1520305841272, value=                                                                         
 0000F470ABF3A587                          column=ba:20170831, timestamp=1522115116459, value=                                                                         
 0000F4730088A5D3                          column=ba:20170805, timestamp=1517598564121, value=                                                                         
 0000F47679E83F7D                          column=ba:20170817, timestamp=1517890046587, value=                                                                         
 0000F47FBA753FC7                          column=ba:20170827, timestamp=1518365792130, value=                                                                         
 0000F48C02F8EB83                          column=ba:20170810, timestamp=1517729864592, value=                                                                         
 0000F49578E63F55                          column=ba:20170828, timestamp=1520302223714, value=                                                                         
 0000F4AC4A93F7A5                          column=ba:20170810, timestamp=1517724545955, value=                                                                         
 0000F4B4807679AA                          column=ba:20170801, timestamp=1517543775374, value=                                                                         
 0000F4B7E374C0FF                          column=ba:20170804, timestamp=1517578239073, value=                                                                         
 0000F4BDBF6EBF37                          column=ba:20170829, timestamp=1520558747936, value=                                                                         
 0000F4CB52FDDA58                          column=ba:20170806, timestamp=1517638015583, value=                                                                         
 0000F4CB52FDDA58                          column=ba:20170807, timestamp=1517677405900, value=

4、提交作业命令:

./spark-submit --master yarn-client  --num-executors 7 --executor-cores 2 --driver-memory 2g  --executor-memory 30g --class com.ba.sparkReadHbase.operatorHfile.hfileinputformat.SparkReadHFile  /home/xxx0108/ftttttttt/testJar/sparkTest9.jar 20170806

spark读HFile对hbase表数据进行分析的更多相关文章

  1. 数据分页处理系列之二:HBase表数据分页处理

      HBase是Hadoop大数据生态技术圈中的一项关键技术,是一种用于分布式存储大数据的列式数据库,关于HBase更加详细的介绍和技术细节,朋友们可以在网络上进行搜寻,笔者本人在接下来的日子里也会写 ...

  2. HBase(三): Azure HDInsigt HBase表数据导入本地HBase

    目录: hdfs 命令操作本地 hbase Azure HDInsight HBase表数据导入本地 hbase hdfs命令操作本地hbase: 参见  HDP2.4安装(五):集群及组件安装 , ...

  3. 一种HBase表数据迁移方法的优化

    1.背景调研: 目前存在的hbase数据迁移主要分如下几类: 根据上图,可以看出: 其实主要分为两种方式:(1)hadoop层:因为hbase底层是基于hdfs存储的,所以可以通过把hdfs上的数据拷 ...

  4. HBase表数据分页处理

    HBase表数据分页处理 HBase是Hadoop大数据生态技术圈中的一项关键技术,是一种用于分布式存储大数据的列式数据库,关于HBase更加详细的介绍和技术细节,朋友们可以在网络上进行搜寻,笔者本人 ...

  5. HBase表数据的转移之使用自定义MapReduce

    目标:将fruit表中的一部分数据,通过MR迁入到fruit_mr表中 Step1.构建ReadFruitMapper类,用于读取fruit表中的数据 package com.z.hbase_mr; ...

  6. Spark读HBase写MySQL

    1 Spark读HBase Spark读HBase黑名单数据,过滤出当日新增userid,并与mysql黑名单表内userid去重后,写入mysql. def main(args: Array[Str ...

  7. hbase操作(shell 命令,如建表,清空表,增删改查)以及 hbase表存储结构和原理

    两篇讲的不错文章 http://www.cnblogs.com/nexiyi/p/hbase_shell.html http://blog.csdn.net/u010967382/article/de ...

  8. Hive如何加载和导入HBase的数据

    当我们用HBase 存储实时数据的时候, 如果要做一些数据分析方面的操作, 就比较困难了, 要写MapReduce Job. Hive 主要是用来做数据分析的数据仓库,支持标准SQL 查询, 做数据分 ...

  9. 用Spark查询HBase中的表数据

    java代码如下: package db.query; import org.apache.commons.logging.Log; import org.apache.commons.logging ...

随机推荐

  1. (三)spring Security 从数据库中检索用户名和密码

    文章目录 配置 Druid 数据源 数据库 Mapper 文件 自定义 `UserDetailsService` 自定义登陆校验器 `AuthenticationProvider ` 配置 secur ...

  2. java常用的工具类

    包装类 https://www.cnblogs.com/benjieqiang/p/11305777.html Arrays类(数组工具类) package day02.com.offcn.test; ...

  3. Python进阶:聊协程

    从一个爬虫说起 Python 2 的时代使用生成器协程,Python 3.7 提供了新的基于 asyncio 和 async / await 的方法.先看一个简单的爬虫代码,爬虫的 scrawl_pa ...

  4. c++实现双端队列

    在使用c++容器的时候其底层如何实现  例如  vector 容器  :是一个内存可以二倍扩容的向量容器,使用方便但是对内存要求严格,弊端明显    list  容器  : 双向循环链表    deq ...

  5. 湖北校园网PC端拨号算法逆向

    湖北校园网PC端拨号算法逆向 前言 上一文 PPPoE中间人拦截以及校园网突破漫谈我们谈到使用 PPPoE 拦截来获取真实的账号密码. 在这个的基础上,我对我们湖北的客户端进行了逆向,得到了拨号加密算 ...

  6. jquery封装的方法

    <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8&quo ...

  7. docker 启动 容器----bootstrap checks failed

    错误信息: bootstrap checks failed 解决方法: 1.修改elasticsearch.yml配置文件,允许外网访问. vim config/elasticsearch.yml,增 ...

  8. Golang官方log包详解

    Golang官方log包详解 以下全是代码, 详解在注释中, 请从头到尾看 // Copyright 2009 The Go Authors. All rights reserved. // Use ...

  9. sql server split切割字符串

    create FUNCTION [dbo].[dnt_split] ( @splitstring varchar(max), @separator CHAR() = ',' ) RETURNS @sp ...

  10. stm32 引脚映射 和 ADC

    老是弄不明白ADC的输入到底在哪,看了stm32F103Ve的datasheet,将引脚和通道的映射关系贴在下面: 好了,写到这,我已经看了中文手册一上午了,可是啥都没看懂,下午接着看,写代码不重要, ...