http://acm.hdu.edu.cn/showproblem.php?pid=6415

Rikka with Nash Equilibrium

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 2021    Accepted Submission(s): 857

Problem Description
Nash Equilibrium is an important concept in game theory.

Rikka and Yuta are playing a simple matrix game. At the beginning of the game, Rikka shows an n×m integer matrix A. And then Yuta needs to choose an integer in [1,n], Rikka needs to choose an integer in [1,m]. Let i be Yuta's number and j be Rikka's number, the final score of the game is Ai,j.

In the remaining part of this statement, we use (i,j) to denote the strategy of Yuta and Rikka.

For example, when n=m=3 and matrix A is

⎡⎣⎢111241131⎤⎦⎥

If the strategy is (1,2), the score will be 2; if the strategy is (2,2), the score will be 4.

A pure strategy Nash equilibrium of this game is a strategy (x,y) which satisfies neither Rikka nor Yuta can make the score higher by changing his(her) strategy unilaterally. Formally, (x,y) is a Nash equilibrium if and only if:

{Ax,y≥Ai,y  ∀i∈[1,n]Ax,y≥Ax,j  ∀j∈[1,m]

In the previous example, there are two pure strategy Nash equilibriums: (3,1) and (2,2).

To make the game more interesting, Rikka wants to construct a matrix A for this game which satisfies the following conditions:
1. Each integer in [1,nm] occurs exactly once in A.
2. The game has at most one pure strategy Nash equilibriums.

Now, Rikka wants you to count the number of matrixes with size n×m which satisfy the conditions.

 
Input
The first line contains a single integer t(1≤t≤20), the number of the testcases.

The first line of each testcase contains three numbers n,m and K(1≤n,m≤80,1≤K≤109).

The input guarantees that there are at most 3 testcases with max(n,m)>50.

 
Output
For each testcase, output a single line with a single number: the answer modulo K.
 
Sample Input
2
3 3 100
5 5 2333
 
Sample Output
64
1170
 
Source
题意:将1 2 3....n*m填入一个n*m的矩阵中,要求最多有一个数既是它所在行的最大值又是其所在列的最大值,求方案数%k的值
题解:由于n*m肯定是其所在行和所在列的最大值,所以可知应该从n*m到1依次填数,保证当前所填数和之前填的数同行或者同列。dp[i][j][q]表示填完当前数之后已经有i行j列被填入数字,q=0表示当前的数填入的位置所在行之前没有被填充,q=1表示所在列之前没有被填充,q=2表示所在行和列都被填充了,可以得到转移方程(1)dp[i][j][0]=(dp[i-1][j][0]+dp[i-1][j][1]+dp[i-1][j][2])%k*(n*j-(i-1)*j)%k; (2)dp[i][j][1]=(dp[i][j-1][0]+dp[i][j-1][1]+dp[i][j-1][2])%k*(m*i-i*(j-1))%k; (3)dp[i][j][2]=(dp[i][j][0]+dp[i][j][1]+dp[i][j][2])%k*((i*j)-(q-1))%k;
 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[][][];
int pre[][];
int main()
{
int t;
scanf("%d",&t);
while(t--){
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
memset(dp,,sizeof(dp));
dp[][][]=n*m;
for(int q=;q<=n*m;q++){
for(int i=min(n,q);i>=;i--){
for(int j=min(m,q-i+);j>=;j--){
if(i*j<q-)break;
dp[i][j][]=(dp[i][j][]+dp[i][j][]+dp[i][j][])%k*((i*j)-(q-))%k;
dp[i][j][]=(dp[i-][j][]+dp[i-][j][]+dp[i-][j][])%k*(n*j-(i-)*j)%k;
dp[i][j][]=(dp[i][j-][]+dp[i][j-][]+dp[i][j-][])%k*(m*i-i*(j-))%k;
}
}
}
printf("%lld\n",(dp[n][m][]+dp[n][m][]+dp[n][m][])%k);
}
return ;
}

注意:这道题如果不通过判断某些条件及时跳出循环就会T掉

[hdoj6415 Rikka with Nash Equilibrium][dp]的更多相关文章

  1. 杭电多校第九场 HDU6415 Rikka with Nash Equilibrium dp

    Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K ...

  2. hdu6415 Rikka with Nash Equilibrium (DP)

    题目链接 Problem Description Nash Equilibrium is an important concept in game theory. Rikka and Yuta are ...

  3. hdu-6415 Rikka with Nash Equilibrium dp计数题

    http://acm.hdu.edu.cn/showproblem.php?pid=6415 题意:将1~n*m填入一个n*m矩阵 问只有一个顶点的构造方案. 顶点的定义是:某数同时是本行本列的最大值 ...

  4. HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)

    Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K ...

  5. 【杂题总汇】HDU2018多校赛第九场 Rikka with Nash Equilibrium

    [HDU2018多校赛第九场]Rikka with Nash Equilibrium 又是靠这样一道题擦边恰好和第两百名分数一样~愉快

  6. HDU6415 Rikka with Nash Equilibrium

    HDU6415 Rikka with Nash Equilibrium 找规律 + 大数 由于规律会被取模破坏,所以用了java 找出规律的思路是: 对于一个n*m的矩阵构造,我先考虑n*1的构造,很 ...

  7. HDU 6415 Rikka with Nash Equilibrium (计数DP)

    题意:给两个整数n,m,让你使用 1 ~ n*m的所有数,构造一个矩阵n*m的矩阵,此矩阵满足:只有一个元素在它的此行和此列中都是最大的,求有多种方式. 析:根据题意,可以知道那个元素一定是 n * ...

  8. 三十分钟理解博弈论“纳什均衡” -- Nash Equilibrium

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 纳什均衡(或者纳什平衡),Nash ...

  9. HDU 6092 17多校5 Rikka with Subset(dp+思维)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

随机推荐

  1. [转帖]Postgresql的csv日志设置

    Postgresql的csv日志设置 2012年06月16日 09:27:00 weixin_34406796 阅读数 24   原文链接:https://my.oschina.net/Kenyon/ ...

  2. Django 关联查询

    查询id=1的XXXXX关联的YYYYY信息 a = XXXXX.objects.get(id=1) a.YYYYY.all() 查询id=1的YYYYY关联的XXXXX信息 b = YYYYY.ob ...

  3. 使用Duilib开发Windows软件(3)——控件的样式

    摘抄下 https://www.cnblogs.com/Alberl/p/3344936.html 的一段代码 <?xml version="1.0" encoding=&q ...

  4. 导出excel的功能效果实现

    <el-button @click="exportExcel" > <i style="display: inline-block;"> ...

  5. java之理解面向对象

    1.程序设计的三种基本结构 顺序结构 顺序结构表示程序中的各操作是按照它们在源代码中的排列顺序依次执行的 选择结构 选择结构表示程序的处理需要根据某个特定的条件选择其中的一个分支执行.选择结构有单选择 ...

  6. uncompyle6安装使用方法

    uncompyle6是一个原生python的跨版本反编译器和fragment反编译器,是decompyle.uncompyle.uncompyle2等的接替者. uncompyle6可将python字 ...

  7. MongoDB操作-备份和恢复

    Mongodb数据库操作-备份 恢复 导出 导入 mongodb数据备份和恢复主要分为二种:一种是针对库的mongodump和mongorestore,一种是针对库中表的mongoexport和mon ...

  8. MySQL 字段类型介绍

    MySQL 基础篇 三范式 MySQL 军规 MySQL 配置 MySQL 用户管理和权限设置 MySQL 常用函数介绍 MySQL 字段类型介绍 MySQL 多列排序 MySQL 行转列 列转行 M ...

  9. CMake入门-04-自定义编译选项

    工作环境 系统:macOS Mojave 10.14.6 CMake: Version 3.15.0-rc4 Hello,World! - 自定义编译选项 CMake 允许为项目增加编译选项,从而可以 ...

  10. C# 中类的成员有哪些?

    类(class)是C#类型中最基础的类型.类是一个数据结构,将状态(字段)和行为(方法和其他函数成员)组合在一个单元中.类提供了用于动态创建类实例的定义,也就是对象(object).类支持继承(inh ...