【51nod】1407 与与与与

设\(f(x)\) 为\(A_{i} \& x == x\)的\(A_{i}\)的个数

设\(g(x)\)为\(x\)里1的个数

\(\sum_{i = 0}^{2^{20}} (-1)^{g(x)}2^{f(x)}\)

\(f(x)\)就是按位取反之后的一个FMT卷积,把判断条件改成这一位不存在即可

也可以用FWT的与卷积直接卷起来

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N;
int a[(1 << 20) + 5],cnt[(1 << 20) + 5],pw[1000005];
int lowbit(int x) {
return x & (-x);
}
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
void Solve() {
memset(a,0,sizeof(a));
int d;
pw[0] = 1;
for(int i = 1 ; i <= N ; ++i) {
read(d);a[d]++;
pw[i] = mul(pw[i - 1],2);
}
for(int j = 0 ; j < 20 ; ++j) {
for(int S = (1 << 20) - 1 ; S >= 0 ; --S) {
if(!((S >> j) & 1)) {
a[S] += a[S ^ (1 << j)];
}
}
}
int ans = 0;
for(int S = 0 ; S < (1 << 20) ; ++S) {
if(S) cnt[S] = cnt[S - lowbit(S)] + 1;
int t;
if(cnt[S] & 1) t = MOD - 1;
else t = 1;
update(ans,mul(t,pw[a[S]]));
}
out(ans);enter;
}
int main(){
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
while(scanf("%d",&N) != EOF) Solve();
}

【51nod】1407 与与与与的更多相关文章

  1. 51nod 最近刷题 简要题解

    51nod 1564 由于数据是随机的,可以证明,对于每一个数,向左或右找比它小的数,长度是logn级别的 考虑枚举最大值 注意,对于每一个最大值,如果直接用2个循环枚举左右端点的话,理论是lognl ...

  2. NOIP前做题记录

    鉴于某些原因(主要是懒)就不一题一题写了,代码直接去\(OJ\)上看吧 CodeChef Making Change 传送门 完全没看懂题解在讲什么(一定是因为题解公式打崩的原因才不是曲明英语太差呢- ...

  3. 【51Nod 1244】莫比乌斯函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...

  4. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  5. 51Nod 1428 活动安排问题

    51Nod   1428  活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...

  6. 51Nod 1278 相离的圆

    51Nod 1278 相离的圆 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 1278 相离的圆 基 ...

  7. 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...

  8. 【51Nod 1622】【算法马拉松 19C】集合对

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1622 简单题..直接暴力快速幂 #include<cstdio&g ...

  9. 【51Nod 1616】【算法马拉松 19B】最小集合

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...

随机推荐

  1. Cannot initialize a variable of type 'Stu *' with an rvalue of type 'void *'

    code: 将 Stu* pStu = malloc(sizeof(Stu)); 改为Stu* pStu = (Stu*)malloc(sizeof(Stu)); code #include < ...

  2. js 将网络图片格式转为base64 canvas 跨域

    function getBase64Image(img) { var canvas = document.createElement("canvas"); canvas.width ...

  3. IdentityServer4入门五:错误处理

    在访问ClientMvc的保护页面时,会跳转到IdentityMvc页面,这时会出现类似下图的错误界面,让人无从入手. 如果你尝试按文字所说的内容去处理.你发现项目已正确设置.其实上面的内容是固定的, ...

  4. Vue学习手记01-安装和项目创建

    1.安装Vue  注:node版本必须大于等于8.9  vue-cli3.x:npm install -g @vue/cli  vue-cli2.x:npm install -g @vue/cli-i ...

  5. qt mvc3

    前面两节讲的model是一维的,这次开始二维的也就是我们常说的Table,相对与list,我们多了一个列的概念. 下面讲解一个例子.我先说明一下我们这个例子,在程序目录下,我们有一个文本文件,其中存放 ...

  6. 如何在Windows Server 2008服务器中把Tomcat启动程序添加到服务中

    转自:https://blog.51cto.com/zdytesting/2314093 tomcat所在的bin目录: 添加服务: service install service_name 移除服务 ...

  7. Windows安装Centos7双系统后Windows启动项消失

    原文: https://www.cnblogs.com/xinglichao/p/9999049.html https://blog.csdn.net/yingzinanfei/article/det ...

  8. 《高性能mysql》笔记(第一章,mysql的架构与历史)

    mysql的服务器逻辑架构图如下: 目前工作用的5.5版本,5.5版本开始mysql开始将innoDB作为默认的存储引擎,innoDB的表是基于聚簇索引建立的. mysql的存储引擎锁管理非常重要,在 ...

  9. main方法的详解

    格式 * public static void main(String[] args) {} 针对格式的解释 public 被jvm调用,访问权限足够大. static 被jvm调用,不用创建对象,直 ...

  10. bat命令编写大全

    bat命令编写大全 摘自:https://blog.csdn.net/haibo19981/article/details/52161653 2016年08月09日 12:26:31 爱睡觉的猫L 阅 ...