做法

先来填第一个数,为了保证\(f(p)\)最大,第一个数分解一下为\(\prod\limits_{p_i}p_i^{k_i}\)使得\(\sum\limits_{k_i}\)最大

显然第一个数为\(2^x3^y\)且\(y≤1\),否则可以把\(3^2\)换成\(2^3\),故第一个数最多有两种选择

定义函数\(Cout(x,y)=\frac{n}{2^x3^y}\)为n以内含因子\(2^x3^y\)的个数

设\(f_{i,x,y}\)为填到第\(i\)个数后\(gcd_{j=1}^i a_i=2^x3^y\)的方案数,显然最后的答案为\(f_{n,0,0}\)

code

#include<bits/stdc++.h>
using namespace std;
typedef int LL;
const LL maxn=1e6+9,mod=1e9+7;
LL n;
LL f[maxn][21][2];
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=ret*base; base=base*base; b>>=1;
}return ret;
}
inline LL Cout(LL x,LL y){
LL val(1<<x);
val*=(y?3:1);
return n/val;
}
int main(){
scanf("%d",&n);
LL p(0);
while((1<<p)<=n) ++p;
f[1][--p][0]=1;
if((1<<p-1)*3<=n) f[1][p-1][1]=1;
for(LL i=1;i<n;++i)
for(LL j=0;j<=p;++j){
for(LL k=0;k<=1;++k){
f[i+1][j][k]=(f[i+1][j][k]+1ll*f[i][j][k]*(Cout(j,k)-i))%mod;
if(j) f[i+1][j-1][k]=(f[i+1][j-1][k]+1ll*f[i][j][k]*(Cout(j-1,k)-Cout(j,k)))%mod;
if(k) f[i+1][j][k-1]=(f[i+1][j][k-1]+1ll*f[i][j][k]*(Cout(j,k-1)-Cout(j,k)))%mod;
}
}
printf("%d",f[n][0][0]);
return 0;
}

CF1174E Ehab and the Expected GCD Problem(动规+数论+分解)的更多相关文章

  1. CF1174E Ehab and the Expected GCD Problem(DP,数论)

    题目大意:对于一个序列,定义它的价值是它的所有前缀的 $\gcd$ 中互不相同的数的个数.给定整数 $n$,问在 $1$ 到 $n$ 的排列中,有多少个排列的价值达到最大值.答案对 $10^9+7$ ...

  2. Codeforces Round #563 (Div. 2) E. Ehab and the Expected GCD Problem

    https://codeforces.com/contest/1174/problem/E dp 好题 *(if 满足条件) 满足条件 *1 不满足条件 *0 ///这代码虽然写着方便,但是常数有点大 ...

  3. codeforces#1157D. Ehab and the Expected XOR Problem(构造)

    题目链接: http://codeforces.com/contest/1174/problem/D 题意: 构造一个序列,满足以下条件 他的所有子段的异或值不等于$x$ $1 \le a_i< ...

  4. 【CF1174D】 Ehab and the Expected XOR Problem - 构造

    题面 Given two integers \(n\) and \(x\), construct an array that satisfies the following conditions: · ...

  5. CF1174D Ehab and the Expected XOR Problem

    思路: 使用前缀和技巧进行问题转化:原数组的任意子串的异或值不能等于0或x,可以转化成前缀异或数组的任意两个元素的异或值不能等于0或x. 实现: #include <bits/stdc++.h& ...

  6. CF1174D Ehab and the Expected XOR Problem(二进制)

    做法 求出答案序列的异或前缀和\(sum_i\),\([l,r]\)子段异或和可表示为\(sum_r\bigoplus sum_{l-1}\) 故转换问题为,填\(sum\)数组,数组内的元素不为\( ...

  7. CF D. Ehab and the Expected XOR Problem 贪心+位运算

    题中只有两个条件:任意区间异或值不等于0或m. 如果只考虑区间异或值不等于 0,则任意两个前缀异或值不能相等. 而除了不能相等之外,还需保证不能出现任意两个前缀异或值不等于m. 即 $xor[i]$^ ...

  8. 题解-Ehab's REAL Number Theory Problem

    Ehab's REAL Number Theory Problem 前置知识 质数 分解质因数 无向无权图最小环<讲> Ehab's REAL Number Theory Problem/ ...

  9. 【算法系列学习】codeforces C. Mike and gcd problem

    C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...

随机推荐

  1. Android SDK版本号 与 API Level 对应关系 201911

    API是开发用的,所以API LEVEL可以认为是内部的:而SDK的版本提供了新特性给用户,是外部可见的. 可以查看以下网址以获取最新的对应关系:  http://developer.android. ...

  2. C#压缩和解压文件

    这里用两种方法实现C#压缩和解压文件 1.使用System.IO.Compression名称空间下的相关类(需引用 System.IO.Compression.FileSystem和System.IO ...

  3. 腾讯域名使用百度CDN加速配置

    1.百度CDN资源包购买 购买地址 https://console.bce.baidu.com/cdn/#/cdn/package/create 我比较穷所以买的是18块100G的资源包. 2.添加域 ...

  4. robot framework 如何处理循环条件下面的变量自增

    下面举了一个基础栗子,可以运行的.${num}就是我需要的自增变量.有人也许会问为什么不用${i},不是我不想用,而是我${i}有其他用处,必须另外定义一个变量,需要注意的是定义变量的时候,应该在循环 ...

  5. JavaScript 基础(数据类型、函数、流程控制、对象)

    一.JavaScript概述 1.1 JavaScript的历史 1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名Script ...

  6. element-ui上传一张图片后隐藏上传按钮

    来自:https://github.com/ElemeFE/element/issues/3367#issuecomment-376402380 侵删 el-upload里面绑定一个占位class: ...

  7. lua游戏开发易错踩坑录

    一.local local函数一定要在调用之前定义(切记,不然会报错或者不能调用该函数) 情况1:监听调此函数后定义 base.model:addlistener("被监听的函数" ...

  8. Scala配置环境变量windows

    scala下载官网网址:http://www.scala-lang.org/download/ 1.下载scala-2.10.4.msi 2.点击安装scala,默认安装路径 3.配置环境变量   ( ...

  9. 6. kafka序列化和反序列化

    https://blog.csdn.net/weixin_33690963/article/details/91698279 kafka序列化: 生产者在将消息传入kafka之前需要将其序列化成byt ...

  10. NLP学习(4)----word2vec模型

    一. 原理 哈弗曼树推导: https://www.cnblogs.com/peghoty/p/3857839.html 负采样推导: http://www.hankcs.com/nlp/word2v ...