The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij= 0 if there is no pipe from node i to node j), for each i the following condition must hold:

fi,1+fi,2+…+fi,N = f1,i+f2,i+…+fN,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

The first line of the input file contains the number N (1 <= N <= 200) – the number of nodes and and M – the number of pipes. The following M lines contain four integer number each – i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

Output

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

Sample Input

2

4 6

1 2 1 2

2 3 1 2

3 4 1 2

4 1 1 2

1 3 1 2

4 2 1 2

4 6

1 2 1 3

2 3 1 3

3 4 1 3

4 1 1 3

1 3 1 3

4 2 1 3

Sample Input

NO

YES

1

2

3

2

1

1

题意:

给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质。

并且满足每根pipe一定的流量限制,范围为[Li,Ri].即要满足每时刻流进来的不能超过Ri(最大流问题),同时最小不能低于Li。(转自hzwer)

/*
无源汇上下界可行流.
建立源汇点.
计算出每个点进出流量的流量差s[i]=out[e]-in[e].
然后如果s[i]>0 则把流量s[i]导给T.
如果s[i]<0 则把从S流量补一条流量为-s[i]的边.
这样的弧我们称为必要弧.
然后想当与把下界分离开来.
若由S发出的弧(到达T的弧)都满流.
即这些弧的流量和等于最大流则为可行.
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define MAXN 110
#define INF 1e9
using namespace std;
int n,m,S,T,cut=1,head[MAXN],s[MAXN],fa[MAXN],ans,sum,low[MAXN],dis[MAXN],b[MAXN];
struct data{int u,v,next,c;}e[MAXN*MAXN];
queue<int>q;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void add(int u,int v,int c)
{
e[++cut].u=u;e[cut].v=v;e[cut].c=c;e[cut].next=head[u];head[u]=cut;
e[++cut].u=v;e[cut].v=u;e[cut].c=0;e[cut].next=head[v];head[v]=cut;
}
bool bfs()
{
q.push(S);
for(int i=0;i<=T;i++) dis[i]=-1,b[i]=0;dis[S]=0;
while(!q.empty())
{
int u=q.front();q.pop();b[u]=0;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[v]==-1&&e[i].c)
{
dis[v]=dis[u]+1;fa[v]=i;
if(!b[v]) b[v]=1,q.push(v);
}
}
}
return dis[T]!=-1;
}
int dfs(int u,int y)
{
if(u==T) return y;
int rest=0;
for(int i=head[u];i&&rest<y;i=e[i].next)
{
int v=e[i].v;
if(dis[v]==dis[u]+1&&e[i].c)
{
int x=dfs(v,min(y-rest,e[i].c));
e[i].c-=x;
e[i^1].c+=x;
rest+=x;
}
}
if(!rest) dis[u]=-1;
return rest;
}
int dinic()
{
ans=0;
while(bfs())
ans+=dfs(S,INF);
return ans;
}
int main()
{
int x,y,t,min1,max1;
t=read();
while(t--)
{
cut=1;sum=0;
memset(head,0,sizeof head);
memset(low,0,sizeof low);
memset(s,0,sizeof s);
n=read();m=read();S=n+1,T=n+2;
for(int i=1;i<=m;i++)
{
x=read(),y=read(),low[i]=read(),max1=read();
s[x]+=low[i],s[y]-=low[i];
add(x,y,max1-low[i]);
}
for(int i=1;i<=n;i++)
{
if(s[i]>0) add(i,T,s[i]),sum+=s[i];//导流.
else if(s[i]<0) add(S,i,-s[i]);//补流.
}
if(sum==dinic())
{
printf("YES\n");
for(int i=1;i<=m;i++)
printf("%d ",low[i]+e[(i<<1)^1].c);
}
else printf("NO\n");
}
return 0;
}

ZOJ2314 Reactor Cooling(无源汇上下界可行流)的更多相关文章

  1. ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...

  2. zoj 2314 Reactor Cooling (无源汇上下界可行流)

    Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...

  3. zoj2314 无源汇上下界可行流

    题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...

  4. hdu 4940 Destroy Transportation system (无源汇上下界可行流)

    Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  5. 【有上下界的网络流】ZOJ2341 Reactor Cooling(有上下界可行流)

     Description The terrorist group leaded by a well known international terrorist Ben Bladen is bulidi ...

  6. ZOJ 2314 Reactor Cooling [无源汇上下界网络流]

    贴个板子 #include <iostream> #include <cstdio> #include <cstring> #include <algorit ...

  7. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  8. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

  9. poj2396有源汇上下界可行流

    题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无 ...

随机推荐

  1. vue的就地复用--- v-for与:key

    v-for遵循的是vue的就地复用原则.文本与数据是绑定的,所以当文本被重新渲染的时候,列表也会被重新渲染. 就地复用只适用于不依赖子组件状态或临时DOM状态的列表渲染输出.[比如表单输入值的列表渲染 ...

  2. mtd-utils 的 使用

    关于编译可以查看文章:<Arm-Linux 移植 mtd-utils 1.x> 查看信息 使用命令前用cat /proc/mtd 查看一下mtdchar字符设备:或者用ls -l /dev ...

  3. Luogu5285 [十二省联考2019] 骗分过样例

    题目分析: 观察前3个点,$361=19*19$,所以可以发现实际上就是快速幂,然后模数猜测是$998244353$,因为功能编号里面有这个数字,用费马小定理处理一下. $pts:12$ 观察第4个点 ...

  4. redis列表数据类型---list

    一.概述 redis列表是简单的字符串列表,按照插入顺序排序 可以添加一个元素到列表的头部(左边)或者尾部(右边) 一个列表最多可以包含2^32-1个元素(每个列表超过40亿个元素). 二.redis ...

  5. C#,WinForm文本框录入内容判断

    || e.KeyChar > ) && (e.KeyChar != ) && (e.KeyChar != ) && (e.KeyChar != ) ...

  6. js入门之对象

    一.对象理解 现实世界 万物皆对象, 一切事物都是对象 对象还是一个具体的事物 对象: 特征和行为组成 特征是名词 用来描述对象的, 行为是动词 程序中的对象 是对现实世界中事物的抽象 1. js中的 ...

  7. Python 自己实现可迭代对象

    import time from collections import Iterable from collections import Iterator class Classmate(object ...

  8. linux USB 编程

    Linux USB架构 可以看出一个USB体系需要4个驱动:USB设备驱动(主要编写这部分),USB主控制器驱动,Gadget驱动,UDC驱动. USB主要有4个功能: MassStorage:大容量 ...

  9. C#-NPOI操作EXCEL

    1.获取NUGET NPOI包. 2.引用命名空间 using NPOI.SS.UserModel;using NPOI.XSSF.UserModel;using NPOI.HSSF.UserMode ...

  10. c# 定制Equals()