题目链接

https://loj.ac/problem/2733

题解

神仙题……

首先可以观察到一个结论: 目标块的两块小三明治一定分别是最后和倒数第二个被吃的。

由此我们可以考虑这两块谁先被吃。这样的好处就是,起初我们一个块被吃的依赖条件是某两个块中有一个被吃就行,现在两个块中的某一个已经钦定了比它更晚,另一个就一定要比它早,这样依赖关系就形成了一张图。

那么有一个\(O(n^4)\)的做法: 对于每一个块枚举先吃哪个小三明治,然后DFS求出要先吃这个三明治需要吃掉哪些三明治。

下面还有一个结论: 设对于一个块\((x,y)\) (第\(x\)行第\(y\)列)我们先吃掉了靠左边界的块,那么对于块\((x,y-1)\) (即它左边的块),我们也需要先吃掉靠左边界的块,右同理。

推论: 设\(L(x,y)\)是要先取走块\((x,y)\)靠左边界的块需要取走的块的集合,则\(L(x-1,y)\subset L(x,y)\).

于是枚举每一行,在这一行中从左到右DFS求\(L\), 从右往左DFS求\(R\), 遍历过的点无需再遍历。

总时间复杂度\(O(n^3)\).

代码

#include<bits/stdc++.h>
#define llong long long
#define mkpr make_pair
using namespace std; const int N = 400;
const int INF = 1e8;
char a[N+3][N+3];
int vis[N+3][N+3];
int dp0[N+3][N+3],dp1[N+3][N+3];
int n,m; int dfs(int x,int y,int dir)
{
if(vis[x][y]==-1) {return INF;}
else if(vis[x][y]==1) {return 0;}
vis[x][y] = -1; int ret = 2;
if(a[x][y]=='N')
{
if(dir==1)
{
if(x>1) {ret += dfs(x-1,y,a[x-1][y]=='N'?1:0);}
if(y<m) {ret += dfs(x,y+1,1);}
}
else
{
if(x<n) {ret += dfs(x+1,y,a[x+1][y]=='N'?0:1);}
if(y>1) {ret += dfs(x,y-1,0);}
}
}
else
{
if(dir==1)
{
if(x<n) {ret += dfs(x+1,y,a[x+1][y]=='N'?0:1);}
if(y<m) {ret += dfs(x,y+1,1);}
}
else
{
if(x>1) {ret += dfs(x-1,y,a[x-1][y]=='N'?1:0);}
if(y>1) {ret += dfs(x,y-1,0);}
}
}
if(ret<INF) {vis[x][y] = 1;}
else ret = INF;
return ret;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++) scanf("%s",a[i]+1);
for(int i=1; i<=n; i++)
{
memset(vis,0,sizeof(vis));
for(int j=1; j<=m; j++)
{
dp0[i][j] = dp0[i][j-1]+dfs(i,j,0);
if(dp0[i][j]>INF) {dp0[i][j] = INF;}
}
memset(vis,0,sizeof(vis));
for(int j=m; j>=1; j--)
{
dp1[i][j] = dp1[i][j+1]+dfs(i,j,1);
if(dp1[i][j]>INF) {dp1[i][j] = INF;}
}
for(int j=1; j<=m; j++)
{
int ans = min(dp0[i][j],dp1[i][j]);
printf("%d ",ans<INF?ans:-1);
}
puts("");
}
return 0;
}

LOJ #2733 [JOI2016春季合宿]Sandwiches (DP)的更多相关文章

  1. LOJ #2731 [JOI2016春季合宿]Solitaire (DP、组合计数)

    题目链接 https://loj.ac/problem/2731 题解 首先一个很自然的思路是,设\(dp[i][j]\)表示选了前\(i\)列,第\(2\)行第\(i\)列的格子是第\(j\)个被填 ...

  2. LOJ #2734 Luogu P3615 [JOI2016春季合宿]Toilets (结论、贪心)

    题目链接 (loj) https://loj.ac/problem/2734 (luogu) https://www.luogu.org/problem/P3615 题解 嗯,考场上肝了\(3h\)然 ...

  3. BZOJ 4221 [JOI2012春季合宿]Kangaroo (DP)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4221 题解 orz WYC 爆切神仙DP 首先将所有袋鼠按大小排序.考虑从前往后DP, ...

  4. JOI2017 春季合宿:Railway Trip

    自己的AC做法似乎离正解偏了十万八千里而且复杂了不少--不管怎样还是记录下来吧. 题意: 题目链接: JOISC2017 F - AtCoder JOISC2017 F - LOJ \(N\)个车站排 ...

  5. UOJ356 [JOI2017春季合宿] Port Facility 【启发式合并】【堆】【并查集】

    题目分析: 好像跑得很快,似乎我是第一个启发式合并的. 把玩具看成区间.首先很显然如果有两个玩具的进出时间有$l1<l2<r1<r2$的关系,那么这两个玩具一定在不同的栈中间. 现在 ...

  6. [JOI2017春季合宿]Port Facility[set、二分图]

    题意 你有两个栈,有 \(n\) 个货物,每个货物有一个进栈时间和出栈时间(所有时间的并集是1~2n),问有多少种不同的入栈方案. \(n\le 10^6\) 分析 把每个货物的存在看成区间,相交的区 ...

  7. UOJ #356. 【JOI2017春季合宿】Port Facility

    Description 小M有两个本质不同的栈. 无聊的小M找来了n个玩具.之后小M把这n个玩具随机顺序加入某一个栈或把他们弹出. 现在小M告诉你每个玩具的入栈和出栈时间,现在她想考考小S,有多少种方 ...

  8. UOJ #357. 【JOI2017春季合宿】Sparklers

    Description 小S和小M去看花火大会. 一共有 n 个人按顺序排成一排,每个人手上有一个仅能被点燃一次的烟花.最开始时第 K 个人手上的烟花是点燃的. 烟花最多能燃烧 T 时间.每当两个人的 ...

  9. UOJ356 【JOI2017春季合宿】Port Facility

    暴力就是O(n^2)连边,二分图,这样只有22分. 我们考虑优化建边,我们按照左端点排序,对于一个新加进来的线段,我们向左端点距其最近的和他相交的线段连边,别的相交的我们连同色边,当一个点连了两条同色 ...

随机推荐

  1. Centos系统修改docker默认网络参数

    刚Yum装完发现是没有网上所说的/etc/default/docker文件的,自己vim后其实也是不生效的. 因为Docker的systemd启动脚本(/usr/lib/systemd/system/ ...

  2. JS基础_赋值运算符

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. base64编码处理大文件

    在做项目的时候遇到需要将文件转为base64编码,并存储在文件中. 在将文件转为base64编码是会将文件读入内存,进行base64编码,输出到文件中.代码入下: FileInputStream st ...

  4. Lua入门记录

    学习资料 Lua入门和Lua高阶章节 Lua中文文档 阅读笔记,只是记录了知识点和一些注意点,详细的看上面提供的学习资料链接 Lua 基础数据类型 nil(空) boolean(布尔) Lua 中 n ...

  5. 如何解决comctl32.dll文件丢失的问题?

    有些Win7系统用户在电脑开机时,系统会出现提示找不到comctl32.dll文件的情况,遇到这个问题我们该怎么去解决呢?好系统重装助手下面就来告诉你方法. Win7系统开机提示找不到comctl32 ...

  6. 纯净CentOS搭建harbor镜像私仓

    物理宿主机IP:  192.168.1.4 在官网下载 CentOS-7-x86_64-DVD-1810 用Hyper-v建立一代虚机,安装时遇分辨率问题无法继续,需要在选择启动界面按TAB键以编辑启 ...

  7. 上班时能不能戴耳机?V

    上班时能不能戴耳机? 新入职一公司, 上班时间不能戴耳机在V站一石激起千层浪,网友意见主要分几派: 甩手走人型: 神经病公司,这还不赶紧走 不走等着过年 不走留着转正 离职,下一题 还是赶紧离职吧 这 ...

  8. functools:管理函数的工具

    介绍 functools模块提供了一些工具来管理或扩展和其他callable对象,从而不必完全重写 修饰符 偏函数partial from functools import partial ''' f ...

  9. Oracle【多表查询操作(SQL92&SQL99)】

    多表联合查询:需要获取的数据分布在多张表中 SQL92: --笛卡尔积:将多个表的数据进行一一对应,所得的结果为多表的笛卡尔积 select * from emp; select * from dep ...

  10. 2.LVS的三种工作模式_NAT模式

    1.LVS的三种工作模式 1)VS/NAT模式(Network address translation) 2)VS/TUN模式(tunneling) 3)DR模式(Direct routing) 1. ...