51nod 2589 快速讨伐

又是一道倒着推改变世界的题。。。

从后往前考虑,设\(dp[i][j]\)表示还有\(i\)个1和\(j\)个\(2\)没有填,那么填一个1的话直接转移过来

\(dp[i][j] \rightarrow dp[i - 1][j]\)

如果填一个\(2\)要把\(A[j]\)的那些敌人都扔在这个2的后面

方案是

\(\binom{N - i + N - j + sum[N] - sum[j - 1]}{A[j]} A[j]! dp[i][j] \rightarrow dp[i][j - 1]\)

然后把\(i < j\)的状态都标成0就好了

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 2005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353,MAXV = 4000000;
int N;
int A[MAXN],s[MAXN];
int fac[MAXV + 5],invfac[MAXV + 5];
int dp[MAXN][MAXN];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
int C(int n,int m) {
if(n < m) return 0;
else return mul(fac[n],mul(invfac[m],invfac[n - m]));
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
void Solve() {
read(N);
for(int i = 1 ; i <= N ; ++i) read(A[i]);
s[0] = 1;
for(int i = 1 ; i <= N ; ++i) s[i] = s[i - 1] + A[i];
fac[0] = 1;
for(int i = 1 ; i <= MAXV ; ++i) fac[i] = mul(fac[i - 1],i);
invfac[MAXV] = fpow(fac[MAXV],MOD - 2);
for(int i = MAXV - 1 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
dp[N][N] = 1;
for(int i = N ; i >= 0 ; --i) {
for(int j = N ; j >= 0 ; --j) {
if(i < j) {dp[i][j] = 0;continue;}
if(i && i - 1 >= j) {
update(dp[i - 1][j],dp[i][j]);
}
if(j) {
update(dp[i][j - 1],mul(mul(dp[i][j],fac[A[j]]),C(N - i + N - j + s[N] - s[j - 1],A[j])));
}
}
}
out(dp[0][0]);enter;
}
int main(){
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【51nod】2589 快速讨伐的更多相关文章

  1. 51nod 2589 快速讨伐

    51nod 如果不考虑升级操作,只有买装备操作和打怪操作,那么首先一定要先买装备,然后可以打死1级的怪,这些怪被打死的时间只要在第一次买装备后面好了,因为现在总操作是\(n+\sum a_i\)个,所 ...

  2. 51nod 1013快速幂 + 费马小定理

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 这是一个等比数列,所以先用求和公式,然后和3^(n+1)有关,有n ...

  3. 51nod 矩阵快速幂(模板题)

    1113 矩阵快速幂  基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给出一个N * N的矩阵,其中的元素均为正整数.求这个矩阵的M次方.由于M次方的计算结果太大 ...

  4. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  5. 51Nod 1004 n^n的末位数字(日常复习快速幂,莫名的有毒,卡mod值)

    1004 n^n的末位数字 题目来源: Author Ignatius.L (Hdu 1061) 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个整数N,输出 ...

  6. 51Nod 1046 A^B Mod C(日常复习快速幂)

    1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = ...

  7. 51nod 1835 - 完全图 - [dp][组合数公式][快速幂]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1835 基准时间限制:1 秒 空间限制:131072 KB   ...

  8. 51Nod 快速傅里叶变换题集选刷

    打开51Nod全部问题页面,在右边题目分类中找到快速傅里叶变换,然后按分值排序,就是本文的题目顺序. 1.大数乘法问题 这个……板子就算了吧. 2.美妙的序列问题 长度为n的排列,且满足从中间任意位置 ...

  9. 51nod 1013 3的幂的和 - 快速幂&除法取模

    题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 Konwledge Point: 快速幂:https:/ ...

随机推荐

  1. [USACO17JAN] 晋升者计数 dfs序+树状数组

    [USACO17JAN] 晋升者计数 dfs序+树状数组 题面 洛谷P3605 题意:一棵有点权的树,找出树中所有\((u,v)\)的对数,其中\(u,v\)满足\(val(u)\le val(v)\ ...

  2. DP的优化

    参考资料: 李煜东<算法竞赛进阶指南> 斜率优化 形如: \(f[i] = min\{f[j]+val(i,j)\}\)的dp,多项式\(val(i,j)\)包含\(i,j\)的乘积项 引 ...

  3. ECMAScript 5.0 基础语法(下)“稍微重点一点点”

    接上篇 七.常用内置对象(复杂数据类型)(重点) (1)数组Array 创建:例  var colors = ['red','blue','green']       #推荐这样,因为简单粗暴 或:v ...

  4. Python数据类型之数值-Python基础前传(5)

    学习任何一门学科或者手艺,最忌讳的就是想的太多,做的太少: 有很多朋友私信问我:jacky,我们该如何选择Python的课程?或是我们该如何选择Mysql课程?到底谁的课件和书籍才是最好的? 借着今天 ...

  5. 解决JAVA单步调试键盘输入被JDB占用的问题

    解决JAVA单步调试键盘输入被JDB占用的问题 问题来源: 在完成本周任务时,编写的代码中含有Scanner类,编译及运行过程均正确,但使用JDB单步调试时,运行到输入行无法在JDB内部输入变量值. ...

  6. kotlin 泛型中类型投射

    fun main(arg: Array<String>) { var ints:Array<Int> = arrayOf(, , ) val any =Array<Any ...

  7. 广告行业——数字广告营销中的DSP、SSP、RTB是个什么概念

    原文链接1 原文链接2 如我是一个创业公司,没啥钱,老板给了1000块钱预算,让我去投互联网广告,对我说: “小卡啊!给你1000块钱,我知道你没见过那么多的巨款吧!不要被吓着,尽情去挥霍吧!哦对了, ...

  8. 增加github访问速度

    转自:https://blog.csdn.net/qq_38977097/article/details/80770987 原因 为什么慢?github的CDN被某墙屏了. 解决方法 绕过dns解析, ...

  9. 工作流调度器之Azkaban

    Azkaban 1. 工作流调度器概述 1.1. 为什么需要工作流调度系统 一个完整的数据分析系统通常都是由大量任务单元组成:shell脚本程序,java程序,mapreduce程序.hive脚本等 ...

  10. IEnumerable和IQueryable口的区别

    IQueryable: 动态表达式树拼接查询语句,把拼接后查询语句进行执行:Execute触发,延迟加载IEnumerable:对内存中的数据,动态拼接查询语句,进行查询:ToList触发,延迟加载: ...