Factor_Analysis
Factor_Analysis(因子分析)
Factor Analysis 简书:较好理解的解释,其中公式有一定的推导(仅展现关键步骤,细节大多需要自行补充),基本为结论式。
感性层面理解:首先,明确FA和PCA的区别。PCA做的是对某个样本,试图寻找到一组方差尽量大的线性表示(基向量),以便降维;FA做的是,假想存在一些隐变量,它们影响着我们的观测结果(即我们得到的数据样本),我们试图找到两者的联系:$x = \Lambda z + \mu + \epsilon$,在简书中有说明其MLE函数形式,不难看出它的MLE形式难以求解,故采用EM(机器学习之最大期望(EM)算法,讲得不错)迭代以求最优解。此外,FA通常用于$m<<n$的庆幸
心路历程:首先,我去推了一下EM,发现自己之前学的时候,由于是在GMM求解的时候需要的,所以并没有很仔细地推导,所以就再去推导了一次推了我一页草稿纸。其次,没有找到:$\mu_{x_1|x_2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$ 以及 $\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$ 的公式名称,如果看官知晓其名称,望告知不才,感激不尽。最后,还是忘记了矩阵求导,又去查了一下,而我也尚未进行公式回带和化简整合。自闭了,一大堆
疑问:简书作者在开头提到:由于存在隐变量,同时不能由MLE得到close form。(close form:即闭式解,通俗解释就是$\nabla f(x) = 0$的$x$表达式),这里不理解为何没有闭式解,目前推的结果(MLE式子),大概猜测是因为$m<<n$的缘故,这样带来的结果就是$\left| \Sigma \right| = 0$(其实本身$\left| \Sigma \right|$是不等于0的,但是由于$m<<n$,所以它等于0,其实就是由于样本数量不足,或者说难以得到如此高维并且充足的样本)。显然,$\left| \Sigma \right| = 0$会在后续中遇到诸多麻烦,最容易想的就是$\Sigma$是不可逆的,这显然很难进行接下来的计算,虽然我算的不多,但是$\Sigma^{-1}$几乎都是需要的。然而,可以引入伪逆,所以肯定还有我没有想到的原因,或者说伪逆会带来较差的表现等等。
备注:由于博客园写推导公式较为麻烦,所以没有在博客上进行推导,不过建议看官如果并未学习过上述知识,还是手推几次以便加强理解和记忆(当然也有一些少年仅仅看就能得到很好理解,并且运用巧妙)。比如在EM算法中,求解lower_bound之前,分子分母同乘一个量以便之后用Jensen不等式化简(orz)等等(好像其他的操作就比较平凡了)。最近闲来无事的时候,发现很多学习过的算法,特别是需要一定数学式子或者思维来求解的(我竟然想去求LCM解烤鸡??),似乎都忘了需要求解的表达式(嘴上讲讲天花乱坠,手里推推苦思冥想),虽然求解过程都不难,但是对于我来说,其中一些技巧还是需要理解的有些计算量也是大啊。
Factor_Analysis的更多相关文章
- zoj Simple Equation 数论
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5176 AX+BY = XY => (X-B)*(Y-A)= ...
- Python机器学习笔记 使用scikit-learn工具进行PCA降维
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...
- OtterTune源码解析
为了方便后面对ottertune进行魔(hu)改(gao),需要先搞清楚它的源码结构和pipeline OtterTune分为两大部分: server side: 包括一个MySQL数据库(用于存储调 ...
随机推荐
- echarts使用结合时间轴timeline动态刷新案例
1.echarts简介 ECharts,一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Fire ...
- Android笔记(九) Android中的布局——框架布局
框架布局没有任何定位方式,所有的控件都会摆放在布局的左上角. 代码示例: framelayout.xml <?xml version="1.0" encoding=" ...
- 一份数据分析学习清单.xls
今天给大家整理一份数据分析的学习清单,打算了解学习这方面的同学可以看看,基本上大的需要学习的点都有涉及:具体细节知识的学习建议大家亲自去动手制作思维导图,自己动手梳理知识脉络. 上期入口:18个堪称神 ...
- nginx编译安装和功能介绍
nginx介绍 nginx: engine X,是由1994年毕业于俄罗斯国立莫斯科鲍曼科技大学的同学为俄罗斯rambler.ru公司开发的,开发工作最早从2002年开始,第一次公开发布时间是2004 ...
- vue-cli2 和vue-cli3
vue-cli2 和vue-cli3 https://www.cnblogs.com/zhanvo/p/10963776.html <!DOCTYPE html> <html lan ...
- 版本问题---Bazel与tensorflow的对应关系
源码安装tf的时候,会用到Bazel,版本不对应,后面会引起好多麻烦. echo "deb [arch=amd64] http://storage.googleapis.com/bazel- ...
- Return local beginning of day time object in Go
Both the title and the text of the question asked for "a local [Chicago] beginning of today tim ...
- Robot Framework--用例、数据、流程分离例子
如果想改变输入框的输入词,则需要不停的复制case,为了减少冗余,可以做一个简单的分层,把搜索流程剥离成一个关键字,然后再不同的case中调用这个关键字,然后传递不同的参数,以进行不同数据在同一流程下 ...
- Jenkins 参数化构建(Extended Choice Parameter)
1.下载安装 Extended Choice Parameter 插件 2.打开job--->General--->参数化构建过程--->Extended Choice Parame ...
- redis--基于内存的高速缓存,NoSql的典型代表
NoSql入门和概述 入门概述 为什么要使用NoSql? 1.单机mysql的美好年代 在早些年以前,那时候网站的访问量不大,用单个数据库完全可以应付.而且那个时候,绝大部分都是LAMP架构:Linu ...