matlab学习——04图与网络(最短路,最小生成树,最大流)
04图与网络
1.最短路
(1) 自己写的dijstra算法
format compact;
clc,clear all
a=zeros(6);
a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;
a(2,3)=15;a(2,4)=20;a(2,6)=25;
a(3,4)=10;a(3,5)=20;
a(4,5)=10;a(4,6)=25;
a(5,6)=55;
a=a+a'
a(find(a==0))=inf %将a=0的数全部替换为无强大
pb(1:length(a))=0;pb(1)=1; %当一个点已经求出到原点的最短距离时,其下标i对应的pb(i)赋1
index1=1; %存放存入S集合的顺序
index2=ones(1,length(a)); %存放始点到第i点最短通路中第i顶点前一顶点的序号
d(1:length(a))=inf;d(1)=0; %存放由始点到第i点最短通路的值
temp=1; %temp表示c1,算c1到其它点的最短路。
while sum(pb)<length(a) %看是否所有的点都标记为P标号
tb=find(pb==0); %找到标号为0的所有点,即找到还没有存入S的点
d(tb)=min(d(tb),d(temp)+a(temp,tb));%计算标号为0的点的最短路,或者是从原点直接到这个点,又或者是原点经过r1,间接到达这个点
tmpb=find(d(tb)==min(d(tb))); %求d[tb]序列最小值的下标
temp=tb(tmpb(1));%可能有多条路径同时到达最小值,却其中一个,temp也从原点变为下一个点
pb(temp)=1;%找到最小路径的表对应的pb(i)=1
index1=[index1,temp]; %存放存入S集合的顺序
temp2=find(d(index1)==d(temp)-a(temp,index1));
index2(temp)=index1(temp2(1)); %记录标号索引
end
d, index1, index2
a =
0 50 0 40 25 10
50 0 15 20 0 25
0 15 0 10 20 0
40 20 10 0 10 25
25 0 20 10 0 55
10 25 0 25 55 0
a =
Inf 50 Inf 40 25 10
50 Inf 15 20 Inf 25
Inf 15 Inf 10 20 Inf
40 20 10 Inf 10 25
25 Inf 20 10 Inf 55
10 25 Inf 25 55 Inf
d =
0 35 45 35 25 10
index1 =
1 6 5 2 4 3
index2 =
1 6 5 6 1 1
(2) 输入邻接矩阵带包
format compact;
% 输入邻接矩阵
clc,clear
a=zeros(7);
a(1,2)=4;a(1,3)=2;
a(2,3)=3;a(2,4)=4;a(2,5)=6;
a(3,4)=5;a(3,6)=4;
a(4,5)=2;a(4,6)=7;
a(5,6)=4;a(5,7)=8;
a(6,7)=3;
b=sparse(a); % 构造稀疏矩阵
[x,y,z]=graphshortestpath(b,1,7,'Directed',1,'Method','Bellman-Ford')
% 有向图,Directed为1为真,方法(Method)默认为Dijstra
p=biograph(b,[],'showW','on');
h=view(p);%显示各个路径权值 % 求节点1到节点5的最短路径
[Dist,Path]=graphshortestpath(b,1,7) % 将最短路径的结点以红色显示
set(h.Nodes(Path),'Color',[1 0.4 0.4]);
% 将最短路径的弧以红色显示
edges=getedgesbynodeid(h,get(h.Nodes(Path),'ID'));
set(edges,'LineColor',[1 0 0]);
(3) 输入节点和权重带包
format compact;
% 输入起点终点和边长
tic
R = [1,1,1,2,2,3,4]; % 起点节点
C = [2,3,4,3,5,4,5]; % 终点节点
W = [3,2,2,1,3,4,3]; % 对应权值
g = digraph(R,C,W) % 创建图
G1=sparse(R,C,W)
[path,distance] = shortestpath(g,1,5); % 计算最短路
plot(g)
toc
format compact;
s = [1 1 2 2 3 4]; % 起始节点向量
e = [2 3 4 5 5 5]; % 终止节点向量
w = [1 4 2 3 2 2]; % 权向量
g = sparse(s,e,w); % 构建稀疏矩阵
g(5,5)=0; % 使稀疏矩阵其余元素为0 p=biograph(g,[],'ShowWeights','on');%建立有向图对象P
h=view(p);%显示各个路径权值 % 求节点1到节点5的最短路径
[Dist,Path]=graphshortestpath(g,1,5,'Method','Dijkstra') % 将最短路径的结点以红色显示
set(h.Nodes(Path),'Color',[1 0.4 0.4]);
% 将最短路径的弧以红色显示
edges=getedgesbynodeid(h,get(h.Nodes(Path),'ID'));
set(edges,'LineColor',[1 0 0]);
>> RCW01
Dist =
4
Path =
1 2 5
2.最小生成树
format compact;
clc,clear
x=[0 5 16 20 33 23 35 25 10];
y=[15 20 24 20 25 11 7 0 3];
xy=[x;y] % xy 2行9列
d=mandist(xy) % 求xy的两两列向量间的绝对值距离(9个点两两的距离)
d=tril(d) % 截取matlab工具箱要求的下三角矩阵
G=sparse(d) % 转化为稀疏矩阵
[ST,pred]=graphminspantree(G,'method','Kruskal') % 调用最小生成树命令
st=full(ST) % 把最小生成树的稀疏矩阵转化为普通矩阵
TreeLength=sum(sum(st)) % 求最小生成树的长度
view(biograph(ST,[],'ShowArrows','off','ShowWeights','on')) % 画出最小生成树
xy =
0 5 16 20 33 23 35 25 10
15 20 24 20 25 11 7 0 3
d =
0 10 25 25 43 27 43 40 22
10 0 15 15 33 27 43 40 22
25 15 0 8 18 20 36 33 27
25 15 8 0 18 12 28 25 27
43 33 18 18 0 24 20 33 45
27 27 20 12 24 0 16 13 21
43 43 36 28 20 16 0 17 29
40 40 33 25 33 13 17 0 18
22 22 27 27 45 21 29 18 0
d =
0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
25 15 0 0 0 0 0 0 0
25 15 8 0 0 0 0 0 0
43 33 18 18 0 0 0 0 0
27 27 20 12 24 0 0 0 0
43 43 36 28 20 16 0 0 0
40 40 33 25 33 13 17 0 0
22 22 27 27 45 21 29 18 0
G =
(2,1) 10
(3,1) 25
(4,1) 25
(5,1) 43
(6,1) 27
(7,1) 43
(8,1) 40
(9,1) 22
(3,2) 15
(4,2) 15
(5,2) 33
(6,2) 27
(7,2) 43
(8,2) 40
(9,2) 22
(4,3) 8
(5,3) 18
(6,3) 20
(7,3) 36
(8,3) 33
(9,3) 27
(5,4) 18
(6,4) 12
(7,4) 28
(8,4) 25
(9,4) 27
(6,5) 24
(7,5) 20
(8,5) 33
(9,5) 45
(7,6) 16
(8,6) 13
(9,6) 21
(8,7) 17
(9,7) 29
(9,8) 18
ST =
(2,1) 10
(4,2) 15
(4,3) 8
(5,4) 18
(6,4) 12
(7,6) 16
(8,6) 13
(9,8) 18
pred =
0 1 4 2 4 4 6 6 8
st =
0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 15 8 0 0 0 0 0 0
0 0 0 18 0 0 0 0 0
0 0 0 12 0 0 0 0 0
0 0 0 0 0 16 0 0 0
0 0 0 0 0 13 0 0 0
0 0 0 0 0 0 0 18 0
TreeLength =
110
3.最大流
format compact;
% 最大流
% 只能解决权重都为正值,且两个顶点之间不能有两条弧的问题
% 本来a(3,4)=5,a(4,3)=2,增加虚拟节点9,删去a(4,3)=2,改为a(4,9)=2;a(9,3)=2; clc,clear,a=zeros(9);
a(1,2)=6;a(1,3)=4;a(1,4)=5;
a(2,3)=3;a(2,5)=9;a(2,6)=9;
a(3,4)=5;a(3,5)=6;a(3,6)=7;a(3,7)=3;
a(4,7)=5;a(4,9)=2;
a(5,8)=12;
a(6,5);a(6,8)=10;
a(7,6)=4;a(7,8)=15;
a(9,3)=2;
G=sparse(a);
view(biograph(G,[],'ShowWeights','on')); % 建立有向图对象
[x,y,z]=graphmaxflow(G,1,8) % 最大流量为x=15
matlab学习——04图与网络(最短路,最小生成树,最大流)的更多相关文章
- Paddle Graph Learning (PGL)图学习之图游走类模型[系列四]
Paddle Graph Learning (PGL)图学习之图游走类模型[系列四] 更多详情参考:Paddle Graph Learning 图学习之图游走类模型[系列四] https://aist ...
- 建模算法(五)——图与网络
(一)图与网络的基本概念 一.无向图 含有的元素为顶点,弧和权重,但是没有方向 二.有向图 含有的元素为顶点,弧和权重,弧具有方向. 三.有限图.无限图 顶点和边有限就是有限图,否则就是无限图. 四. ...
- NASNet学习笔记—— 核心一:延续NAS论文的核心机制使得能够自动产生网络结构; 核心二:采用resnet和Inception重复使用block结构思想; 核心三:利用迁移学习将生成的网络迁移到大数据集上提出一个new search space。
from:https://blog.csdn.net/xjz18298268521/article/details/79079008 NASNet总结 论文:<Learning Transfer ...
- 【GCN】图卷积网络初探——基于图(Graph)的傅里叶变换和卷积
[GCN]图卷积网络初探——基于图(Graph)的傅里叶变换和卷积 2018年11月29日 11:50:38 夏至夏至520 阅读数 5980更多 分类专栏: # MachineLearning ...
- 【学习笔记】Iperf3网络性能测试工具
[学习笔记]Iperf3网络性能测试工具 网络性能评估主要是监测网络带宽的使用率,将网络带宽利用最大化是保证网络性能的基础,但是由于网络设计不合理.网络存在安全漏洞等原因,都会导致网络带宽利用率不高. ...
- 最全面的图卷积网络GCN的理解和详细推导,都在这里了!
目录 目录 1. 为什么会出现图卷积神经网络? 2. 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral doma ...
- 深度学习——手动实现残差网络ResNet 辛普森一家人物识别
深度学习--手动实现残差网络 辛普森一家人物识别 目标 通过深度学习,训练模型识别辛普森一家人动画中的14个角色 最终实现92%-94%的识别准确率. 数据 ResNet介绍 论文地址 https:/ ...
- Python学习--04条件控制与循环结构
Python学习--04条件控制与循环结构 条件控制 在Python程序中,用if语句实现条件控制. 语法格式: if <条件判断1>: <执行1> elif <条件判断 ...
- Matlab 语谱图(时频图)绘制与分析
Matlab 语谱图(时频图)绘制与分析 语谱图:先将语音信号作傅里叶变换,然后以横轴为时间,纵轴为频率,用颜色表示幅值即可绘制出语谱图.在一幅图中表示信号的频率.幅度随时间的变化,故也称" ...
随机推荐
- 华为OJ:字符串处理
#include <iostream> #include <stdlib.h> #include <string> #include <sstream> ...
- 三、vue基础--表单绑定
表单输入绑定:可以一起使用以下修饰符,都是在v-model里面使用的,有input,radio,textrea,select中都可以使用绑定 1.单选按钮,代码如下: <div id='app' ...
- Oracle-查看sql运行状况
查看占io较大的正在运行的session SELECT se.sid, se.serial#, pr.SPID, se.username, se.status, se.terminal, se.pro ...
- Pthon操作Gitlab API----批量删除,创建,取消保护
1.需求:大批量的应用上线后合并到Master,其他的分支develop/test/uat等需要同步最新代码的操作. 2.操作:可以通过传参 ,列表 的方式把每个项目的id值填入,才能对相关项目进行批 ...
- BZOJ1209 最佳包裹 (三维凸包 增量法)
题意 求三维凸包的表面积. N≤100N\le100N≤100 题解 暴力往当前的凸包里加点.O(n2)O(n^2)O(n2).题解详见大佬博客 扰动函数shakeshakeshake是为了避免四点共 ...
- 自定义的JSP标签
JSP标签 JSP标准标签库(JSTL)是一个JSP标签集合,它封装了JSP应用的通用核心功能. JSTL支持通用的.结构化的任务,比如迭代,条件判断,XML文档操作,国际化标签,SQL标签. 除了这 ...
- oracle存储过程把查询到的值更新到别的表
create or replace procedure update_nst_t_Clime2 as cursor c_db is select * from NST_T_FRAME f ,) as ...
- 25 | MySQL是怎么保证高可用的?
在上一篇文章中,我和你介绍了binlog的基本内容,在一个主备关系中,每个备库接收主库的binlog并执行. 正常情况下,只要主库执行更新生成的所有binlog,都可以传到备库并被正确地执行,备库就能 ...
- Linux 理解Linux的memory overcommit 与 OOM Killer
Memory Overcommit的意思是操作系统承诺给进程的内存大小超过了实际可用的内存.一个保守的操作系统不会允许memory overcommit,有多少就分配多少,再申请就没有了,这其实有些浪 ...
- RabbitMQ消息队列+安装+工具介绍
1.MQ为Message Queue,消息队列是应用程序和应用程序之间的通信方法 2. 多种开发语言支持,其实就是一个驱动,如连接数据库的mysql驱动,oracle驱动等. 3. 4.采用以下语言开 ...