Running
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5652   Accepted: 2128

Description

The cows are trying to become better athletes, so Bessie is running on a track for exactly N (1 ≤ N ≤ 10,000) minutes. During each minute, she can choose to either run or rest for the whole minute.

The ultimate distance Bessie runs, though, depends on her 'exhaustion factor', which starts at 0. When she chooses to run in minute i, she will run exactly a distance of Di (1 ≤ Di ≤ 1,000) and her exhaustion factor will increase by 1 -- but must never be allowed to exceed M (1 ≤ M ≤ 500). If she chooses to rest, her exhaustion factor will decrease by 1 for each minute she rests. She cannot commence running again until her exhaustion factor reaches 0. At that point, she can choose to run or rest.

At the end of the N minute workout, Bessie's exaustion factor must be exactly 0, or she will not have enough energy left for the rest of the day.

Find the maximal distance Bessie can run.

Input

* Line 1: Two space-separated integers: N and M
* Lines
2..N+1: Line i+1 contains the single integer: Di

Output

* Line 1: A single integer representing the largest distance Bessie can run
while satisfying the conditions.
 

Sample Input

5 2
5
3
4
2
10

Sample Output

9

Source

题意:给你n,m,后边n个数,一个人第i分钟可以移动a[i]长度,每分钟会多1点疲劳,疲劳值不能超过m,到m必须休息,每个时间点都可以休息,每次休息就必须休息到疲劳值为0,问时间消耗m分钟后,疲劳为0走的最大长度
ac代码
#include<stdio.h>
#include<string.h>
#define min(a,b) (a>b?a:b)
int dp[10010][505],a[10010];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
int i,j,k;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
memset(dp,0,sizeof(dp));
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
dp[i][j]=dp[i-1][j-1]+a[i];
}
dp[i][0]=dp[i-1][0];
for(k=1;k<=m;k++)
{
if(i-k>=0)
dp[i][0]=min(dp[i][0],dp[i-k][k]);
}
}
printf("%d\n",dp[n][0]);
}
}

  

POJ 题目3661 Running(区间DP)的更多相关文章

  1. POJ - 3280Cheapest Palindrome-经典区间DP

    POJ - 3280 Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & ...

  2. POJ 3280 Cheapest Palindrome (区间DP) 经典

    <题目链接> 题目大意: 一个由小写字母组成的字符串,给出字符的种类,以及字符串的长度,再给出添加每个字符和删除每个字符的代价,问你要使这个字符串变成回文串的最小代价. 解题分析: 一道区 ...

  3. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  4. POJ - 2955 Brackets (区间DP)

    题目: 给出一个有括号的字符串,问这个字符串中能匹配的最长的子串的长度. 思路: 区间DP,首先枚举区间长度,然后在每一个长度中通过枚举这个区间的分割点来更新这个区间的最优解.还是做的少. 代码: / ...

  5. poj 2955 括号匹配 区间dp

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6033   Accepted: 3220 Descript ...

  6. POJ 2176 Folding(区间DP)

    题意:给你一个字符串,请把字符串压缩的尽量短,并且输出最短的方案. 例如:AAAAA可压缩为5(A), NEERCYESYESYESNEERCYESYESYES可压缩为2(NEERC3(YES)). ...

  7. POJ 2955 Brackets (区间DP,常规)

    题意: 给出一个字符串,其中仅仅含 “ ( ) [ ] ” 这4钟符号,问最长的合法符号序列有多长?(必须合法的配对,不能混搭) 思路: 区间DP的常规问题吧,还是枚举区间[i->j]再枚举其中 ...

  8. POJ 3280 Cheapest Palindrome ( 区间DP && 经典模型 )

    题意 : 给出一个由 n 中字母组成的长度为 m 的串,给出 n 种字母添加和删除花费的代价,求让给出的串变成回文串的代价. 分析 :  原始模型 ==> 题意和本题差不多,有添和删但是并无代价 ...

  9. POJ 2955 Brackets (区间dp入门)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

随机推荐

  1. Java链接MySQL练习题:格式化日期、性别;避免代码注入

    一.查询人员名单,按序号 姓名 性格(男或女) 民族(某族) 生日(年月日)输出 import java.sql.*; import java.text.SimpleDateFormat; publi ...

  2. ViewPager onPageChangeListener

    今天在做项目的时候,由于要处理viewPager页面滑动的事件,所以对其进行了一个小小的研究: 首先ViewPager在处理滑动事件的时候要用到OnPageChangeListener OnPageC ...

  3. RANSAC 剔除错误匹配 估计模型

    随机抽样一致,这个算法,我以前一直都没有理解透彻.只知道可以用来直线拟合,网上大多数中文博客也都是写直线拟合的,但是用来匹配二维特征的时候,总还是没弄明白. 基本概念参考 http://www.cnb ...

  4. js写的ajax

    1.jsp <%@ page language="java" import="java.util.*" pageEncoding="utf-8& ...

  5. 如何在本地电脑安装phpmyadmin及访问地址

    因为要安装wordpress,上网查了下安装wordpress前要安装phpmyadmin,前提是要在自己本地电脑上安装APMSeverx虚拟主机才可以,在本地访问phpmyadmin页面.下面的步骤 ...

  6. 【LeetCode】#344 Reverse String

    [Question] Write a function that takes a string as input and returns the string reversed. Example: G ...

  7. C++对于大型图片的加载缩放尝试

    Qt对于图片的操作主要集中在这几个类 QImage ,QImageReader ,QPixmap 其中QImage这个类对图片的缩放有几个很不错的技巧,不过对于大图片却并不好使,当我们去看QImage ...

  8. Remove Duplicates from Sorted Array II [LeetCode]

    Follow up for "Remove Duplicates":What if duplicates are allowed at most twice? For exampl ...

  9. thinkPHP的用法之M

    M方法 //添加 $res = M('comment')->add($data); //成功返回新增ID,失败返回false //删除 M('myop_myinvite')->where( ...

  10. LINUX磁盘分区、格式化、挂载、卸载全程详解

    1.一切皆文件 Linux系统有一个理念:“一切皆文件”,所以计算机的硬件在linux中也是以“文件”的形式存在于/dev目录中.   图为CentOS 6.5系统中/dev目录的部分内容.不同的计算 ...