Central heating
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 614   Accepted: 286

Description

Winter has come, but at the Ural State University heating is not turned on yet. There's one little problem: the University is heated only if all of the valves are opened. There are some technicians at the University. Each of them is responsible for one or more valves. There may be several technicians responsible for the same valve. When a technician gets an instruction to turn on the heating he goes round all of his valves and turns them. It means that if a valve was opened then he closes it, and if it was closed then he opens it. It is well known that every technician earns his money not in vain so it's impossible to replace any technician by any combination of other technicians. 
Your task is to determine who of the technicians is to get an instruction "to turn on the heating" in order to heat all the Ural State University. Note that there are N technicians and N valves at the University (1 <= N <= 250). 

Input

The first line of an input contains the number N. The next N lines contain lists of the valves in charge of each of the technicians. It means that a line number i + 1 contains numbers of the valves that the i-th technician is responsible for. Each list of valves is followed by –1.

Output

An output should contain a list of technicians' numbers sorted in ascending order. If several lists are possible, you should send to an output the shortest one. If it's impossible to turn on the heating at the University, you should write "No solution" .

Sample Input

4
1 2 -1
2 3 4 -1
2 -1
4 -1

Sample Output

1 2 3

Source

原题大意: 有n个人,n个阀门。给n组数,每i组一-1结束,代表第i个人管理这组数中正数编号的阀门。
              问:能否确定几个人,使得所有阀门都开着。
解题思路: 不知道为啥是高斯消元,明明线性代数用的比较多。
              由于同一个人,开偶数次与不开是一样的,开奇数次与开1次是一样的。
              于是对于一个人,只有两种情况,不开和开一次。
              既然如此,我们可以把每个人的状态做成n维列向量,再做成增广矩阵,如题中所示。
             1  0  0  0  |  1
             1  1  1  0  |  1
             0  1  0  0  |  1
             0  1  0  1  |  1
             这样,解这个增广矩阵就可以了。
             值得一提的是,原文中有 it's impossible to replace any technician by any combination of other technicians. 
             什么意思呢,也就是说,这个系数矩阵分成向量后是线性无关的。
             也就是说,系数矩阵是n!必定有唯一的解。于是就可以无视原题中的无解和多解情况了。
#include<stdio.h>
#include<string.h>
int a[270][270],ans[270],n;
void swap(int *a,int *b)
{
int cnt=0,c[270],i;
for(cnt=1;cnt<=n+1;++cnt)
{
c[cnt]=*a;
*a++=*(b+cnt-1);
}
for(i=1;i<=n+1;++i) *b++=c[i];
}
void XOR(int col,int *a,int *b)
{
int i;
for(i=col;i<=n+1;++i) *b++^=*a++;
}
void init()
{
int col=0,x,i;
for(i=1;i<=n;++i) a[i][n+1]=1;
for(col=1;col<=n;++col) while(~scanf("%d",&x)&&x!=-1) a[x][col]=1;
}
void solved()
{
int col,row,node;
for(col=1;col<=n;++col)
{
node=0;
for(row=col;row<=n;++row)
{
if(a[row][col])
{
node=row;
break;
}
}
if(node) swap(a[node]+1,a[col]+1);
for(row=col+1;row<=n;++row)
if(a[row][col]) XOR(col,a[col]+col,a[row]+col);
}
}
void target()
{
int i,j;
for(i=n;i>=1;--i)
{
ans[i]=a[i][n+1];
for(j=n-1;j>=1;--j) a[j][n+1]^=(ans[i] & a[j][i]);
}
int first=1;
for(i=1;i<=n;++i) if(ans[i]) printf("%d ",i);
printf("\n");
}
int main()
{
int t,x,col=0;
scanf("%d",&n);
init();
solved();
target();
return 0;
}

  

             

[高斯消元] POJ 2345 Central heating的更多相关文章

  1. poj 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 678   Accepted: 310 Des ...

  2. POJ 2345 Central heating(高斯消元)

    [题目链接] http://poj.org/problem?id=2345 [题目大意] 给出n个开关和n个人,每个人可以控制一些开关,现在所有的开关都是关着的 一个指令可以让一个人掰动所有属于他控制 ...

  3. 数学 --- 高斯消元 POJ 1830

    开关问题 Problem's Link: http://poj.org/problem?id=1830 Mean: 略 analyse: 增广矩阵:con[i][j]:若操作j,i的状态改变则con[ ...

  4. 【POJ】2947 Widget Factory(高斯消元)

    http://poj.org/problem?id=2947 各种逗啊..还好1a了.. 题意我就不说了,百度一大把. 转换为mod的方程组,即 (x[1,1]*a[1])+(x[1,2]*a[2]) ...

  5. POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...

  6. POJ 3185 The Water Bowls(高斯消元-枚举变元个数)

    题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最 ...

  7. 【POJ 1830】 开关问题 (高斯消元)

    开关问题   Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为 ...

  8. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)

    [题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了 ...

  9. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)题解

    题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详 ...

随机推荐

  1. WWWFileSharePro 7.0 汉化破解绿色版,比hfs更稳定的Web文件共享服务器

    下载链接: http://pan.baidu.com/s/1eSykgFo 密码: m2s9 软件会被360杀毒软件误报病毒,楼主用火绒杀毒不误报. 本程序汉化由Bluefish完成,破解文件提取自网 ...

  2. No module named 'urllib2'

    import urllib2 response = urllib2.urlopen('http://www.baidu.com/') html = response.read() print html ...

  3. 年终汇报、总结、述职:教你做一场B格满满的技术大会演讲

    什么样的演讲和呈现最受听众欢迎,内容干货?逻辑清晰?长相帅气? 偶尔被邀作为speaker参加一些圈内的技术大会进行演讲.这里我分享下自己的经验,如何做一场B格满满的技术大会演讲,希望给做汇报.总结. ...

  4. 【干货】微信场景之H5页面制作免费工具大集合

    营销代有手段出,各领风骚数百天.要说现在哪些营销方式最能传播,屡屡刷爆朋友圈的H5页面肯定就是首当其冲的,提到H5页面,就立马想到"围住神经猫",上线微信朋友圈3天的时间便创造了用 ...

  5. C++备忘录

    参考资料: 1. <C++编程思想(第一卷)> 知识点: ● register变量:它是一种局部变量类型.它告诉编译器尽快访问该变量.一般会把变量放在寄存器中,但不保证一定会.不能得到或计 ...

  6. 如何把 Callback 接口包装成 Promise 接口

    最近一段时间一直在看Node.js,在开发过程中经常要调用一些异步接口,通常在接口的最后一个参数会传入一个回调函数,可以用来处理异常,非异常情况.大致模式如下: var fs = require(“f ...

  7. 译\Node.js应用的持续部署

    Node.js应用的持续部署 翻译前 翻译自:https://blog.risingstack.com/continuous-deployment-of-node-js-applications/ 正 ...

  8. HTML基本标签

    h1-h6:标题标签.(从大到小) p:段落标签. img:图片标签:属性src:图片的相对路径:alt:图片加载失败的提示语言. a:超链接标签:属性:href:地址链接:target:网页打开的默 ...

  9. kali 安装FTP服务器-vsftpd

    参考文章:Ubuntu 14.04 FTP服务器--vsftpd的安装和配置 本文将会介绍在kali2.0上安装vsftpd,主要分成四块:更新源列表.安装和配置vsftpd服务器.使用ftp命令传输 ...

  10. Java 文本文件 读写

    Use File/FileInputStream/FileOutputStream. public void testWithFIS() throws IOException{ File file=n ...