Elasticsearch聚合 之 Terms
之前总结过metric聚合的内容,本篇来说一下bucket聚合的知识。Bucket可以理解为一个桶,他会遍历文档中的内容,凡是符合要求的就放入按照要求创建的桶中。
本篇着重讲解的terms聚合,它是按照某个字段中的值来分类:
比如性别有男、女,就会创建两个桶,分别存放男女的信息。默认会搜集doc_count的信息,即记录有多少男生,有多少女生,然后返回给客户端,这样就完成了一个terms得统计。
Terms聚合
{
"aggs" : {
"genders" : {
"terms" : { "field" : "gender" }
}
}
}
得到的结果如下:
{
...
"aggregations" : {
"genders" : {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets" : [
{
"key" : "male",
"doc_count" : 10
},
{
"key" : "female",
"doc_count" : 10
},
]
}
}
}
数据的不确定性
使用terms聚合,结果可能带有一定的偏差与错误性。
举个例子:
我们想要获取name字段中出现频率最高的前5个。
此时,客户端向ES发送聚合请求,主节点接收到请求后,会向每个独立的分片发送该请求。
分片独立的计算自己分片上的前5个name,然后返回。当所有的分片结果都返回后,在主节点进行结果的合并,再求出频率最高的前5个,返回给客户端。
这样就会造成一定的误差,比如最后返回的前5个中,有一个叫A的,有50个文档;B有49。
但是由于每个分片独立的保存信息,信息的分布也是不确定的。
有可能第一个分片中B的信息有2个,但是没有排到前5,所以没有在最后合并的结果中出现。
这就导致B的总数少计算了2,本来可能排到第一位,却排到了A的后面。
size与shard_size
为了改善上面的问题,就可以使用size和shard_size参数。
- size参数规定了最后返回的term个数(默认是10个)
- shard_size参数规定了每个分片上返回的个数
- 如果shard_size小于size,那么分片也会按照size指定的个数计算
通过这两个参数,如果我们想要返回前5个,size=5;shard_size可以设置大于5,这样每个分片返回的词条信息就会增多,相应的误差几率也会减小。
order排序
order指定了最后返回结果的排序方式,默认是按照doc_count排序。
{
"aggs" : {
"genders" : {
"terms" : {
"field" : "gender",
"order" : { "_count" : "asc" }
}
}
}
}
也可以按照字典方式排序:
{
"aggs" : {
"genders" : {
"terms" : {
"field" : "gender",
"order" : { "_term" : "asc" }
}
}
}
}
当然也可以通过order指定一个单值的metric聚合,来排序。
{
"aggs" : {
"genders" : {
"terms" : {
"field" : "gender",
"order" : { "avg_height" : "desc" }
},
"aggs" : {
"avg_height" : { "avg" : { "field" : "height" } }
}
}
}
}
同时也支持多值的Metric聚合,不过要指定使用的多值字段:
{
"aggs" : {
"genders" : {
"terms" : {
"field" : "gender",
"order" : { "height_stats.avg" : "desc" }
},
"aggs" : {
"height_stats" : { "stats" : { "field" : "height" } }
}
}
}
}
min_doc_count与shard_min_doc_count
聚合的字段可能存在一些频率很低的词条,如果这些词条数目比例很大,那么就会造成很多不必要的计算。
因此可以通过设置min_doc_count和shard_min_doc_count来规定最小的文档数目,只有满足这个参数要求的个数的词条才会被记录返回。
通过名字就可以看出:
- min_doc_count:规定了最终结果的筛选
- shard_min_doc_count:规定了分片中计算返回时的筛选
script
桶聚合也支持脚本的使用:
{
"aggs" : {
"genders" : {
"terms" : {
"script" : "doc['gender'].value"
}
}
}
}
以及外部脚本文件:
{
"aggs" : {
"genders" : {
"terms" : {
"script" : {
"file": "my_script",
"params": {
"field": "gender"
}
}
}
}
}
}
filter
filter字段提供了过滤的功能,使用两种方式:include可以过滤出包含该值的文档;相反则使用exclude。
例如:
{
"aggs" : {
"tags" : {
"terms" : {
"field" : "tags",
"include" : ".*sport.*",
"exclude" : "water_.*"
}
}
}
}
上面的例子中,最后的结果应该包含sport并且不包含water。
也支持数组的方式,定义包含与排除的信息:
{
"aggs" : {
"JapaneseCars" : {
"terms" : {
"field" : "make",
"include" : ["mazda", "honda"]
}
},
"ActiveCarManufacturers" : {
"terms" : {
"field" : "make",
"exclude" : ["rover", "jensen"]
}
}
}
}
多字段聚合
通常情况,terms聚合都是仅针对于一个字段的聚合。因为该聚合是需要把词条放入一个哈希表中,如果多个字段就会造成n^2的内存消耗。
不过,对于多字段,ES也提供了下面两种方式:
- 1 使用脚本合并字段
- 2 使用copy_to方法,合并两个字段,创建出一个新的字段,对新字段执行单个字段的聚合。
collect模式
对于子聚合的计算,有两种方式:
- depth_first 直接进行子聚合的计算
- breadth_first 先计算出当前聚合的结果,针对这个结果在对子聚合进行计算。
默认情况下ES会使用深度优先,不过可以手动设置成广度优先,比如:
{
"aggs" : {
"actors" : {
"terms" : {
"field" : "actors",
"size" : 10,
"collect_mode" : "breadth_first"
},
"aggs" : {
"costars" : {
"terms" : {
"field" : "actors",
"size" : 5
}
}
}
}
}
}
缺省值Missing value
缺省值指定了缺省的字段的处理方式:
{
"aggs" : {
"tags" : {
"terms" : {
"field" : "tags",
"missing": "N/A"
}
}
}
}
Elasticsearch聚合 之 Terms的更多相关文章
- ElasticSearch聚合(转)
ES之五:ElasticSearch聚合 前言 说完了ES的索引与检索,接着再介绍一个ES高级功能API – 聚合(Aggregations),聚合功能为ES注入了统计分析的血统,使用户在面对大数据提 ...
- ElasticSearch聚合分析
聚合用于分析查询结果集的统计指标,我们以观看日志分析为例,介绍各种常用的ElasticSearch聚合操作. 目录: 查询用户观看视频数和观看时长 聚合分页器 查询视频uv 单个视频uv 批量查询视频 ...
- Elasticsearch聚合问题
在测试Elasticsearch聚合的时候报了一个错误.具体如下: GET /megacorp/employee/_search { "aggs": { "all_int ...
- ElasticSearch 聚合分析
公号:码农充电站pro 主页:https://codeshellme.github.io ES 中的聚合分析(Aggregations)是对数据的统计分析功能,它的优点是实时性较高,相比于 Hadoo ...
- Spring Data Elasticsearch 聚合查询
如需要统计某件商品的数量,最高价格,最低价格等就用到了聚合查询,就像数据库中的group by 首先需要注入ElasticsearchTemplate @Autowired private Elast ...
- elasticsearch聚合之bucket terms聚合
目录 1. 背景 2. 前置条件 2.1 创建索引 2.2 准备数据 3. 各种聚合 3.1 统计人数最多的2个省 3.1.1 dsl 3.1.2 运行结果 3.2 统计人数最少的2个省 3.2.1 ...
- Elasticsearch聚合——aggregation
聚合提供了分组并统计数据的能力.理解聚合的最简单的方式是将其粗略地等同为SQL的GROUP BY和SQL聚合函数.在Elasticsearch中,你可以在一个响应中同时返回命中的数据和聚合结果.你可以 ...
- 2018/2/13 ElasticSearch学习笔记三 自动映射以及创建自动映射模版,ElasticSearch聚合查询
终于把这些命令全敲了一遍,话说ELK技术栈L和K我今天花了一下午全部搞定,学完后还都是花式玩那种...E却学了四天(当然主要是因为之前上班一直没时间学,还有安装服务时出现的各种error真是让我扎心了 ...
- elasticsearch聚合操作——本质就是针对搜索后的结果使用桶bucket(允许嵌套)进行group by,统计下分组结果,包括min/max/avg
分析 Elasticsearch有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计.它很像SQL中的GROUP BY但是功能更强大. 举个例子,让我们找到所有职员中最大 ...
随机推荐
- 跟visual studio 集成的git插件
目前有三个,git extension,微软的 visual studio tools for git extension,还有git source control provider 经测试,最好用的 ...
- 创建widget
1. 定义方法 def predictAll(tickers, startdt='36', enddt = 'today', predictdays = 1): if enddt == 'today' ...
- 使用SQLIO测试磁盘性能
SQLIO 是一个用于测试存储系统能力的命令行工具,用以获取存储系统相关的性能指标,以判断系统的 I/O 处理能力. 在微软的网站可以下载 SQLIO 的安装包,安装后目录中会出现如下文件: EULA ...
- Wix 安装部署教程(十一) ---QuickWix
这次发布的是这两天做的一个WIX工具QuickWIX,主要解决两个问题点1.对大文件快速生成wix标签(files,Directories,ComponentRef):2.比较前后两次工程的差异.大的 ...
- Programming Entity Framework CodeFirst--数据库约定和配置
这一章主要主要讲的是我们的模型如何映射到数据库,而不影响模型,以及不同的映射场景. 一.表名和列名 1.指定表名 [Table("PersonPhotos")] public cl ...
- Android Instrumention.sendPointerSync发送Event失败分析
问题场景 Android4.3,进入被测app某个Activity后,测试案例ClickOnScreen出现异常(Click can not be completed!). Android4.4正常. ...
- Spring Trasnaction管理(3)- 事务嵌套
问题导读 Spring 如何管理嵌套的事务 Spring事务传播机制 Nested 和 RequireNew 有何区别 事务传播机制 事务的传播机制应该都比较熟悉 在日常开发中会遇到需要事务嵌套的情况 ...
- C#学习系列-String与string的区别
参考:http://www.microsoftvirtualacademy.com/Content/ViewContent.aspx?et=9851&m=9832&ct=31042 如 ...
- salesforce 零基础开发入门学习(二)变量基础知识,集合,表达式,流程控制语句
salesforce如果简单的说可以大概分成两个部分:Apex,VisualForce Page. 其中Apex语言和java很多的语法类似,今天总结的是一些简单的Apex的变量等知识. 有如下几种常 ...
- 安卓中的数据存储方式以及ContentProvider的简单介绍
1.介绍android的数据存储方式 File存储 sharedPrefrence存储方式 conmtentprovider sqlitedatabase 网络存储 2.请介绍下ContentPr ...