CF528D Fuzzy Search 【NTT】
题目链接
题解
可以预处理出\(S\)每个位置能匹配哪些字符
对每种字符
构造两个序列
如果\(S[i]\)可以匹配该字符,则该位置为\(0\),否则为\(1\)
如果\(T[i]\)可以匹配该字符,则该位置为\(1\),否则为\(0\)
将\(T\)翻转一下做卷积
如果某个字符意义下的某个位置为\(1\),就说明出现了\(T\)能匹配而\(S\)不能的情况,此时\(T\)不匹配\(S\)
否则\(T\)匹配\(S\)
即寻找有多少位置都为\(0\)
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(s,v) memset(s,v,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 800005,maxm = 100005,INF = 0x3f3f3f3f;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = 0; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 1) + (out << 3) + c - 48; c = getchar();}
return flag ? out : -out;
}
const int G = 3,P = 998244353;
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
int R[maxn],c[maxn];
void NTT(int* a,int n,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k],y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P,a[j + k + i] = (x + P - y) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
void conv(int* a,int* b,int deg1,int deg2){
int n = 1,L = 0;
while (n <= (deg1 + deg2)) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (int i = 1; i <= deg2; i++) c[i] = b[i];
for (int i = deg2 + 1; i < n; i++) c[i] = 0; c[0] = 0;
NTT(a,n,1); NTT(c,n,1);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * c[i] % P;
NTT(a,n,-1);
}
int A[4][maxn],B[4][maxn];
char ss[maxn],tt[maxn];
int N,M,K,last[4],S[maxn],T[maxn];
int id(char c){
if (c == 'A') return 0;
if (c == 'C') return 1;
if (c == 'G') return 2;
return 3;
}
int main(){
N = read(); M = read(); K = read();
scanf("%s%s",ss + 1,tt + 1); reverse(tt + 1,tt + 1 + M);
REP(i,N) S[i] = id(ss[i]);
REP(i,M) T[i] = id(tt[i]);
REP(i,N) for (int j = 0; j < 4; j++) A[j][i] = 1;
for (int i = 1; i <= N; i++){
last[S[i]] = i;
for (int j = 0; j < 4; j++){
if (last[j] && i - last[j] <= K) A[j][i] = 0;
}
}
for (int j = 0; j < 4; j++) last[j] = 0;
for (int i = N; i; i--){
last[S[i]] = i;
for (int j = 0; j < 4; j++){
if (last[j] && last[j] - i <= K) A[j][i] = 0;
}
}
for (int i = 1; i <= M; i++){
for (int j = 0; j < 4; j++){
if (T[i] == j) B[j][i] = 1;
else B[j][i] = 0;
}
}
for (int j = 0; j < 4; j++) conv(A[j],B[j],N,M);
int ans = 0;
for (int i = 1 + M; i <= N + 1; i++){
int flag = 1;
for (int j = 0; j < 4; j++) if (A[j][i]){flag = 0; break;}
ans += flag;
}
printf("%d\n",ans);
return 0;
}
CF528D Fuzzy Search 【NTT】的更多相关文章
- CF528D. Fuzzy Search [FFT]
CF528D. Fuzzy Search 题意:DNA序列,在母串s中匹配模式串t,对于s中每个位置i,只要s[i-k]到s[i+k]中有c就认为匹配了c.求有多少个位置匹配了t 预处理\(f[i][ ...
- 【NTT】loj#6261. 一个人的高三楼
去年看过t老师写这题博客:以为是道神仙题 题目大意 求一个数列的$k$次前缀和.$n\le 10^5$. 题目分析 [计数]cf223C. Partial Sums 加强版.注意到最后的式子是$f_i ...
- CF528D Fuzzy Search 和 BZOJ4259 残缺的字符串
Fuzzy Search 给你文本串 S 和模式串 T,求 S 的每个位置是否能模糊匹配上 T. 这里的模糊匹配指的是把 T 放到 S 相应位置上之后,T 中每个字符所在位置附近 k 个之内的位置上的 ...
- CF-528D Fuzzy Search(FFT字符串匹配)
Fuzzy Search 题意: 给定一个模式串和目标串按下图方式匹配,错开位置不多于k 解题思路: 总共只有\(A C G T\)四个字符,那么我们可以按照各个字符进行匹配,比如按照\(A\)进行匹 ...
- luogu3723 [AH2017/HNOI2017]礼物 【NTT】
题目 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天, ...
- Luogu4491 [HAOI2018]染色 【容斥原理】【NTT】
题目分析: 一开始以为是直接用指数型生成函数,后来发现复杂度不对,想了一下容斥的方法. 对于有$i$种颜色恰好出现$s$次的情况,利用容斥原理得到方案数为 $$\binom{m}{i}\frac{P_ ...
- 【推导】【NTT】hdu6061 RXD and functions(NTT)
题意:给定一个n次多项式f(x)的各项系数,让你求f(x-Σai)的各项系数. http://blog.csdn.net/v5zsq/article/details/76780053 推导才是最关键的 ...
- 【NTT】hdu1402 A * B Problem Plus
r·2^k+1 r k g 3 1 1 2 5 1 2 2 17 1 4 3 97 3 5 5 193 3 6 5 257 1 8 3 7681 15 9 17 12289 3 12 11 40961 ...
- 【NTT】bzoj3992: [SDOI2015]序列统计
板子题都差点不会了 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生 ...
随机推荐
- 微信小程序之wx.request:fail错误,真机预览请求无效问题解决,安卓,ios网络预览异常
新版开发者工具增加了https检查功能:可使用此功能直接检查排查ssl协议版本问题: 可能原因:0:后台域名没有配置0.1:域名不支持https1:没有重启工具:2:域名没有备案,或是备案后不足24小 ...
- item 2: 理解auto类型的推导
本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 如果你已经读过item 1的模板类型推导,你已经知道大部分关于au ...
- Http指南(1)
网关:是一种特殊的服务器,作为其他服务器的中间实体使用; Agent代理:所有发布web请求的应用程序都是HTTP Agent代理.Web浏览器其实就是一种代理; HTTP报文是在HTTP应用程序之间 ...
- vs2017+opencv4.0.1安装配置详解(win10)
一.说明 笔者之前已经安装过了vs2017,对应的opencv是3.4.0版本的.但现在想体验下opencv4的改变之处,所以下载了最新的opencv4.0.1. vs2017的安装请自行搜索安装,本 ...
- 更换Ubuntu源为国内源的操作记录
我们都知道,Ubuntu的官方源对于国内用户来说是比较慢的,可以将它的源换成国内的源(比如阿里源),这样用起来就很快了.下面记录下更换操作: 首先了解下/etc/apt/sources.list文件 ...
- Mysql主从同步(1) - 概念和原理介绍 以及 主从/主主模式 部署记录
Mysql复制概念Mysql内建的复制功能是构建大型高性能应用程序的基础, 将Mysql数据分布到多个系统上,这种分布机制是通过将Mysql某一台主机数据复制到其它主机(slaves)上,并重新执行一 ...
- 代码规范(RL-TOC)用更合理的方式写 JavaScript
代码可以改变世界 不规范代码可以毁掉世界 只有先学会写规范的代码,才可以走的更远 编程语言之间有很多编程规范都是通用: 命名 不要用语言不明的缩写,不用担心名字过长,名字一定要让别人知道确切的意思; ...
- Linux内核第七节 20135332武西垚
预处理.编译.链接和目标文件的格式 可执行程序是怎么得来的 以C语言为例,c代码经过编译器的预处理,编译成汇编代码,由汇编器编译成目标代码,再链接成可执行文件,由操作系统加载到cpu里来执行. (截图 ...
- Leetcode——66.加一
@author: ZZQ @software: PyCharm @file: leetcode66_加一.py @time: 2018/11/29 16:07 要求:给定一个由整数组成的非空数组所表示 ...
- Hibernate_HQL
public class According_condition { public static void main(String[]args){ Session session=HibernateU ...