Description

​ 给你一棵\(~n~\)个点的树和一个整数\(~k~\)。设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小。\(~n~\)个点选\(~k~\)个点一共有\(~C_n^k~\)种方案,请你求出所有方案的\(~f(S)~\)的和, 对\(~924844033~\)取模。

​ 求所有\(~k \in [1, ~n]~\)的答案。

看题戳我

Solution

​ 首先看到这道题,根本不会快速求\(~f(S)~\),所以换一个角度,考虑每个点对于答案的贡献。不难发现, 对于单独一个\(~k~\),一个点\(~u~\)会产生贡献当且仅当这\(~k~\)个点不全在以\(~u~\)的相邻节点为根的子树中,根据容斥可以得到一个点对一个\(~k~\)的贡献为\(~C_n^k - \sum_{v \in {nex_u}} ^{} {C_{siz_v}^k}~\),观察这个式子,可以发现计算总贡献时每个点的子树大小会被计算两次,一个是本身子树大小\(~siz_u~\),一个是\(~n - siz_u~\),而 \(~C_n^k~\)被计算了\(~n~\)次,所以有

\[Ans_k = n \times {n \choose k} - \sum_{i = 1} ^ n {num_i \times {i \choose k}}
\]

​ 其中,\(num_i~\)表示子树大小为\(~i~\)的子树个数,这样已经可以卷后半部分了,但是我们想要一个更简便的式子。

定义一个新的\(~cnt_i~\)表示

\[cnt_i = \begin{cases}
n, ~ i = n\\
-num_i, ~ i \neq n
\end{cases}
\]

所以上面的式子可以更简便的表示为

\[Ans_k = {\sum_{i = 1}^{n} cnt_i \times {i \choose k}} = \frac{1}{k!}~{\sum_{i = 1}^{n}} ~\frac{cnt_i \times i!}{(i - k)!}
\]

​ 那么把\(~cnt_i \times i!~\)放一起,\(~\frac{1}{(i - k)!}~\)放一起, 用一个\(~FFT~\)套路把\(~(i - k)~\)倒过来之后就可以卷起来了。

​ 但是为了求了这个更简便的式子会导致\(~cnt_i \times i!~\)可能是负数,而我的\(~NTT~\)已经习惯了这样写,look down,因为普通题目中要卷起来的一般都是正的,所以一开始就把这题要卷的东西变成正的也是可以的。

a[j + k] = (x + y) % mod, a[j + k + (i >> 1)] = (x - y + mod) % mod;

​ 而我一开始没有转正,所以这样写很不优秀,因为一旦\(~y~\)是一个比较小的负数,那么\(~(x - y + mod)~\)就爆\(~int~\)了,我因为这里调了一个晚上+一个下午,很难受。

最后提一下这个题的模数是\(~924844033~\),所以原根是\(~5~\)而不是熟知的\(~3~\) 。

Code

#include<bits/stdc++.h>
#define For(i, j, k) for(int i = j; i <= k; ++i)
#define Forr(i, j, k) for(int i = j; i >= k; --i)
#define Travel(i, u) for(int i = beg[u], v = to[i]; i; i = nex[i], v = to[i])
using namespace std; inline int read() {
int x = 0, p = 1; char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') p = -1;
for(; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x *= p;
} inline void File() {
#ifndef ONLINE_JUDGE
freopen("AGC005F.in", "r", stdin);
freopen("AGC005F.out", "w", stdout);
#endif
} const int N = 2e5 + 10, maxn = N << 2, mod = 924844033;
int a[maxn], b[maxn], e = 1, beg[N], nex[N << 1], to[N << 1];
int rev[maxn], bit, len, siz, invg[maxn], powg[maxn];
int fac[N], inv[N], cnt[N], sz[N], u, v, n; inline int qpow(int a, int b) {
int res = 1;
for (; b; a = 1ll * a * a % mod, b >>= 1)
if (b & 1) res = 1ll * res * a % mod;
return res;
} inline void Init(int n) {
fac[0] = inv[0] = 1;
For(i, 1, n) fac[i] = 1ll * i * fac[i - 1] % mod;
inv[n] = qpow(fac[n], mod - 2);
Forr(i, n - 1, 0) inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;
} inline void add(int x, int y) {
to[++ e] = y, nex[e] = beg[x], beg[x] = e;
to[++ e] = x, nex[e] = beg[y], beg[y] = e;
} inline void dfs(int u, int f) {
sz[u] = 1;
Travel(i, u) if (v != f) dfs(v, u), sz[u] += sz[v];
-- cnt[sz[u]], -- cnt[n - sz[u]];
} inline void NTT(int *a, int flag) {
For(i, 0, siz - 1) if (rev[i] > i) swap(a[rev[i]], a[i]);
for (int i = 2; i <= siz; i <<= 1) {
int wn = flag ? powg[i] : invg[i];
for (int j = 0; j < siz; j += i) {
int w = 1;
for (int k = 0; k < (i >> 1); ++ k, w = 1ll * w * wn % mod) {
int x = a[j + k], y = 1ll * w * a[j + k + (i >> 1)] % mod;
a[j + k] = (x + y) % mod, a[j + k + (i >> 1)] = (x - y) % mod;
}
}
}
if (!flag) {
int g = qpow(siz, mod - 2);
For(i, 0, siz - 1) a[i] = 1ll * g * a[i] % mod;
}
} int main() {
File(), Init(N - 5);
n = read();
For(i, 2, n) u = read(), v = read(), add(u, v);
dfs(1, 0), cnt[n] = n; for (siz = 1; siz <= (n << 1); siz <<= 1) ++ bit;
For(i, 0, siz - 1) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1)); int g = qpow(5, mod - 2);
for(int i = 1; i <= siz; i <<= 1) {
invg[i] = qpow(g, (mod - 1) / i),
powg[i] = qpow(5, (mod - 1) / i);
} For(i, 0, n) {
a[i] = 1ll * cnt[i] * fac[i] % mod;
b[i] = inv[n - i];
} NTT(a, 1), NTT(b, 1);
For(i, 0, siz) a[i] = 1ll * a[i] * b[i] % mod;
NTT(a, 0); For(i, 1, n) {
int ans = 1ll * a[n + i] * inv[i] % mod;
ans = (ans + mod) % mod;
printf("%d\n", ans);
}
return 0;
}

【AGC005F】Many Easy Problems (NTT)的更多相关文章

  1. 【AGC005F】Many Easy Problems FFT 容斥原理

    题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...

  2. 【AGC005F】Many Easy Problems

    Description 题目链接 对于每个\(k\),统计任选\(k\)个点作为关键点的"最小生成树"的大小之和 Solution 正向想法是枚举或者计算大小为\(x\).叶子数目 ...

  3. 【BZOJ3450】Tyvj1952 Easy 期望DP

    [BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...

  4. 【Uoj34】多项式乘法(NTT,FFT)

    [Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...

  5. 【CF932E】Perpetual Subtraction(NTT,线性代数)

    [CF932E]Perpetual Subtraction(NTT,线性代数) 题面 洛谷 CF 题解 设\(f_{i,j}\)表示\(i\)轮之后这个数恰好为\(j\)的概率. 得到转移:\(\di ...

  6. 【HDU4565】So Easy!

    [HDU4565]So Easy! 题面 要你求 \[ \lceil (a+\sqrt b)^n \rceil \% m \] 其中\(0<a,m<2^{15},(a-1)^2<b& ...

  7. 【Hello 2018 D】Too Easy Problems

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 可以考虑把所有的题目按照ai排序. 然后顺序考虑最后做出来的题目个数和第i道题目的ai一样. 则1..i-1这些题目就没有用了. 值 ...

  8. 【BZOJ5306】[HAOI2018]染色(NTT)

    [BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i ...

  9. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

随机推荐

  1. CF1039D You Are Given a Tree 根号分治、二分、贪心

    传送门 似乎直接做不太好做-- 当你不会做的时候就可以考虑根号算法了(或许是这样的 考虑如果只有一个询问如何计算答案. 显然是可以贪心的,思路与NOIP2018D1T3是相同的.每一个点向上传一条链, ...

  2. 一文详解如何用 TensorFlow 实现基于 LSTM 的文本分类(附源码)

    雷锋网按:本文作者陆池,原文载于作者个人博客,雷锋网已获授权. 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用 ...

  3. 【C#实现漫画算法系列】-判断 2 的乘方

    微信上关注了算法爱好者这个公众号,有一个漫画算法系列的文章生动形象,感觉特别好,给大家推荐一下(没收过广告费哦),原文链接:漫画算法系列.也看到了许多同学用不同的语言来实现算法,作为一枚C#资深爱好的 ...

  4. C#断点续传下载。

    断点续传 最近在优化之前的下载流程,仅此篇幅留作笔记之用,日后其他研究此类问题的伙伴可以马上了解原理和开发,减少开发成本. 原理:断点续传目前比较通用的是使用HTTP续传方式,相关的资料可以通过访问: ...

  5. php 中 opendir() readdir() scandir()

    opendir(path,context)若成功,则该函数返回一个目录流,否则返回 false 以及一个 error.可以通过在函数名前加上 “@” 来隐藏 error 的输出. readdir() ...

  6. tmux使用总结

    ctrl+b +%:增加垂直分屏 ctlr+b +左右箭头: 在垂直分屏中移动 ctrl+b+c:新建窗口(不分屏) ctrl+b+数字键: 切换窗口 ctrl+b+d: 断开窗口 tmux  a : ...

  7. poj1426 Find The Multiple(c语言巧解)

    Find The Multiple Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 36335   Accepted: 151 ...

  8. Linux内核分析 读书笔记 (第七章)

    第七章 链接 1.链接是将各种代码和数据部分收集起来并组合成为一个单一文件的过程,这个文件可被加载(或被拷贝)到存储器并执行. 2.链接可以执行于编译时,也就是在源代码被翻译成机器代码时:也可以执行于 ...

  9. Linux实践二:模块

    一.基本模块的实现: 1.进程遍历打印输出 2.简单地编写一个新的系统调用(替换空的系统调用号) 基本模块学到的知识点: 1.相关指令 make oldconfig 配置内核 make 编译内核 ma ...

  10. 实现基于SSH的门票管理系统开发的质量属性

    我要做的是一个基于SSH的门票售卖系统,在系统中常见的质量属性有:可用性.可修改性.性能.安全性.易用性. 可用性方面: 可用性是指系统正常运行时间的比例,是通过两次故障之间的时间长度或在系统崩溃情况 ...