[CQOI2016]密钥破解
嘟嘟嘟
这题我读了两遍才懂,然后感觉要解什么高次同余方程……然后我又仔细的看了看题,发现只要求得\(p\)和\(q\)就能求出\(r\),继而用exgcd求出\(d\),最后用快速幂求出\(n\)。
再看看这个数据范围,用Pollard-Rho最适合不过了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<ctime>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
//const int maxn = ;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << 1) + (ans << 3) + ch - '0'; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
ll e, N, c, r;
In ll mul(ll a, ll b, ll mod)
{
ll d = ((long double)a / mod * b + 1e-8);
ll r = a * b - d * mod;
return r < 0 ? r + mod : r;
}
In ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
In ll f(ll x, ll a, ll mod) {return (mul(x, x, mod) + a) % mod;}
int a[] = {2, 3, 5, 7, 11};
const int M = (1 << 7) - 1;
In ll find(ll n)
{
for(int i = 0; i < 5; ++i) if(n % a[i] == 0) return a[i];
ll x = rand(), y = x, a = rand() % (n - 2) + 2, t = 1;
for(int k = 2;; k <<= 1, y = x)
{
ll p = 1;
for(int i = 1; i <= k; ++i)
{
x = f(x, a, n);
p = mul(p, abs(x - y), n);
if(!(i & M))
{
t = gcd(p, n);
if(t > 1) break;
}
}
if(t > 1 || (t = gcd(p, n)) > 1) break;
}
return t;
}
In ll pollard_rho(ll x)
{
ll p = x;
while(p == x) p = find(x);
return p;
}
In void exgcd(ll a, ll b, ll& x, ll& y, ll& t)
{
if(!b) t = a, x = 1, y = 0;
else exgcd(b, a % b, y, x, t), y -= a / b * x;
}
In ll quickpow(ll a, ll b, ll mod)
{
a %= mod;
ll ret = 1;
for(; b; b >>= 1, a = mul(a, a, mod)) //别忘了这里也会爆long long
if(b & 1) ret = mul(ret, a, mod);
return ret;
}
int main()
{
srand(time(0));
e = read(), N = read(), c = read();
ll p = pollard_rho(N), q = N / p; ll r = (p - 1) * (q - 1);
ll d, y, t;
exgcd(e, r, d, y, t);
t = r / t;
d = (d % t + t) % t;
ll n = quickpow(c, d, N);
write(d), space, write(n), enter;
return 0;
}
[CQOI2016]密钥破解的更多相关文章
- LG4718 【模板】Pollard-Rho算法 和 [Cqoi2016]密钥破解
Pollard-Rho算法 总结了各种卡常技巧的代码: #define int long long typedef __int128 LL; IN int fpow(int a,int b,int m ...
- BZOJ4522:[CQOI2016]密钥破解(Pollard-Rho,exgcd)
Description 一种非对称加密算法的密钥生成过程如下: 1. 任选两个不同的质数 p ,q 2. 计算 N=pq , r=(p-1)(q-1) 3. 选取小于r ,且与 r 互质的整数 e ...
- BZOJ 4522: [Cqoi2016]密钥破解
http://www.lydsy.com/JudgeOnline/problem.php?id=4522 题目:给你RSA密钥的公钥和密文,求私钥和原文,其中\(N=pq\le 2^{62}\),p和 ...
- BZOJ4522: [Cqoi2016]密钥破解
pollard's rho模板题. 调参调到160ms无能为力了,应该是写法问题,不玩了. #include<bits/stdc++.h> using namespace std; typ ...
- BZOJ 4522: [Cqoi2016]密钥破解 (Pollard-Rho板题)
Pollard-Rho 模板 板题-没啥说的- 求逆元出来后如果是负的记得加回正数 CODE #include<bits/stdc++.h> using namespace std; ty ...
- BZOJ 4522: [Cqoi2016]密钥破解 exgcd+Pollard-Rho
挺简单的,正好能再复习一遍 $exgcd$~ 按照题意一遍一遍模拟即可,注意一下 $pollard-rho$ 中的细节. #include <ctime> #include <cma ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- LibreOJ2045 - 「CQOI2016」密钥破解
Portal Description 给出三个正整数\(e,N,c(\leq2^{62})\).已知\(N\)能表示成\(p\cdot q\)的形式,其中\(p,q\)为质数.计算\(r=(p-1)( ...
- Visio Premium 2010密钥+破解激活方法
Visio Premium 2010密钥+破解激活方法: 在安装时能够使用下面密钥: GR24B-GC2XY-KRXRG-2TRJJ-4X7DC VWQ6G-37WBG-J7DJP-CY66Y-V27 ...
随机推荐
- ELK(elasticsearch+kibana+logstash)搜索引擎(一): 环境搭建
1.ELK简介 这里简单介绍一下elk架构中的各个组件,关于elk的详细介绍的请自行百度 Elasticsearch是个开源分布式搜索引擎,是整个ELK架构的核心 Logstash可以对数据进行收集. ...
- [Codeforces 1016F]Road Projects
Description 题库链接 给你一棵 \(n\) 个节点的树,定义 \(1\) 到 \(n\) 的代价是 \(1\) 到 \(n\) 节点间的最短路径的长度.现在给你 \(m\) 组询问,让你添 ...
- .6-浅析webpack源码之validateSchema模块
validateSchema模块 首先来看错误检测: const webpackOptionsValidationErrors = validateSchema(webpackOptionsSchem ...
- 获取微信的access_tokey,处理json格式的数据
#region 获取微信凭证 public string GetAccessToken(string wechat_id) { string accessToken = ""; D ...
- 数据库和ado连接语句的使用总结
基本的sql语句 创建数据库:CREATE DATABASE database-name 删除数据库:drop database dbname 创建表:create table tabname(字段属 ...
- activeX
对外接口和classid在idl文件中,接口功能实现在ctrl类中实现
- Xshell配置密钥公钥(Public key)与私钥(Private Key)登录
ssh登录提供两种认证方式:口令(密码)认证方式和密钥认证方式.其中口令(密码)认证方式是我们最常用的一种,这里介绍密钥认证方式登录到linux/unix的方法. 使用密钥登录分为3步:1.生成密钥( ...
- 【开发工具之eclipse】8、The word is not correctly spelled。强迫症看着很难受
eclipse出现了极其让我郁闷的错误,"The word is not correctly spelled" 我讨教过一些朋友以后,还是没有得到答案,我就纳闷了.然后我继续将代码 ...
- 详解scss的继承、占位符和混合宏
1.继承和占位符 两者都是通过@extend来引用. 1.1 继承 一个已经存在的css样式类,可以被其他样式类继承. 例如,实现以下css样式: .btn, .btn--primary, .btn- ...
- css 单位px、em、rem、vh、vw、vmin、vmax区别
1.px:相对长度单位.像素px是相对于显示器屏幕分辨率而言的. 2.em:相对长度单位.相对于当前对象内文本的字体尺寸.如当前对行内文本的字体尺寸未被人为设置,则相对于浏览器的默认字体尺寸. 看下面 ...