BZOJ4170:极光(CDQ分治)
Description
Input
Output
对于每次询问操作,输出一个非负整数表示答案
Sample Input
2 4 3
Query 2 2
Modify 1 3
Query 2 2
Modify 1 2
Query 1 1
Sample Output
3
3
Solution
设一个点的坐标为$(x,a[x])$,然后发现$graze(x,i) \leq k$的点就是曼哈顿距离到$x$点距离小于等于$k$的点。
但这玩意儿好像是个斜着的正方形?咋矩形求和啊……话说我是不是之前做$K-D~Tree$的时候看过一个什么曼哈顿转切比雪夫的?
曼哈顿$(x,a[x])->$切比雪夫$(x+a[x],x-a[x])$,切比雪夫计算两点距离好像是横纵坐标差的$max$?
这样转下切比雪夫然后一个点要查询的点不就成了一个正着的正方形内的点的个数了么……
这样好像就可以矩形求和了啊……发现那个什么鬼畜历史版本就是扯淡?不就是加入一个点么…
$PS:$此题数据范围描述是假的!
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000009)
using namespace std; struct Que{int x,y,opt,v;}Q[N],tmp[N];
int n,m,q_num,cnt,a[N],c[N],ans[N];
char opt[]; inline int read()
{
int x=,w=; char c=getchar();
while (c<'' || c>'') {if (c=='-') w=-; c=getchar();}
while (c>='' && c<='') x=x*+c-'', c=getchar();
return x*w;
} void Update(int x,int k)
{
for (; x<=1e6; x+=(x&-x)) c[x]+=k;
} int Query(int x)
{
int ans=;
for (; x; x-=(x&-x)) ans+=c[x];
return ans;
} void CDQ(int l,int r)
{
if (l==r) return;
int mid=(l+r)>>;
CDQ(l,mid); CDQ(mid+,r);
int i=l,j=mid+,k=l-;
while (i<=mid || j<=r)
if (j>r || i<=mid && (Q[i].x<Q[j].x || Q[i].x==Q[j].x && Q[i].opt<Q[j].opt))
{
if (Q[i].opt==) Update(Q[i].y,);
tmp[++k]=Q[i]; ++i;
}
else
{
if (Q[j].opt==)
{
if (Q[j].v>) ans[Q[j].v]+=Query(Q[j].y);
else ans[-Q[j].v]-=Query(Q[j].y);
}
tmp[++k]=Q[j]; ++j;
}
for (int i=l; i<=mid; ++i) if (Q[i].opt==) Update(Q[i].y,-);
for (int i=l; i<=r; ++i) Q[i]=tmp[i];
} int main()
{
n=read(); m=read();
for (int i=; i<=n; ++i)
{
a[i]=read();
Q[++q_num]=(Que){i+a[i],i-a[i],,};
}
for (int i=; i<=m; ++i)
{
scanf("%s",opt); int x=read(),k=read();
if (opt[]=='M') a[x]=k, Q[++q_num]=(Que){x+k,x-k,,};
else
{
++cnt;
Q[++q_num]=(Que){x+a[x]+k,x-a[x]+k,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]-k-,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]+k,,-cnt};
Q[++q_num]=(Que){x+a[x]+k,x-a[x]-k-,,-cnt};
}
}
for (int i=; i<=q_num; ++i) Q[i].x+=, Q[i].y+=;
CDQ(,q_num);
for (int i=; i<=cnt; ++i) printf("%d\n",ans[i]);
}
BZOJ4170:极光(CDQ分治)的更多相关文章
- BZOJ4170 极光(CDQ分治 或 树套树)
传送门 BZOJ上的题目没有题面-- [样例输入] 3 5 2 4 3 Query 2 2 Modify 1 3 Query 2 2 Modify 1 2 Query 1 1 [样例输出] 2 3 3 ...
- 【教程】简易CDQ分治教程&学习笔记
前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦! CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...
- BZOJ 2683 简单题 ——CDQ分治
[题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...
- HDU5618 & CDQ分治
Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...
- 初识CDQ分治
[BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 200 ...
- HDU5322 Hope(DP + CDQ分治 + NTT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...
- BZOJ2683 简单题(CDQ分治)
传送门 之前听别人说CDQ分治不难学,今天才知道果真如此.之前一直为自己想不到CDQ的方法二很不爽,今天终于是想出来了一道了,太弱-- cdq分治主要就是把整段区间分成两半,然后用左区间的值去更新右区 ...
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
- 【BZOJ-3262】陌上花开 CDQ分治(3维偏序)
3262: 陌上花开 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1439 Solved: 648[Submit][Status][Discuss ...
随机推荐
- TopK
网易面试挂了,伤心. 一面面试官不是搞技术的,二面面试官搞ios,全程不问JVM,并发的知识,运气真差 而且手撸代码硬伤,没得编译 准备先在IDE敲一遍,在再纸上面写一遍. package com.q ...
- 【转载】To the Virgins, to Make Much of Time
Gather ye rosebuds while ye may Old Time is still a-flying And this same flower that smiles today To ...
- 代码创建 WPF 旋转、翻转动画(汇总)
先建立一个button <Button Width="80" Height="60" Content="旋转" Name=" ...
- UdPloyer交付系统设计思路
宏观愿景: 一键搞定项目依赖环境,将软件交付过程管理化,实现DevOps研发测试运维一体化. 一.一站式版本交付生命周期管理 业务线[私有权限] 1.SVN源码交付 合主干.版本归档.拉分支.版本回 ...
- canvas-star1.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 【读书笔记】iOS-如何选择本地化应用
早在2007年发布iPhone的时候 ,苹果并没有一同发布本地化SDK,苹果公司声称不需要本地SDK,鼓励大家使用JavaScript,CSS和HTML开发Web应用.但接下来剧情并没有按照苹果设计的 ...
- WebGIS中利用AGS JS+eCharts实现一些数据展示的探索
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/. 1.背景 eCharts提供了迁徙图.热点图.夜视图等跟地图能够很好的 ...
- 安卓开发_浅谈Fragment之ListFragment
ListFragment,即Fragment的一个子类,当我们用的一个Fragment只需要一个listview视图的时候使用 该类有几个特点: 1.ListFragment 本身具只有一个ListV ...
- Android Studio 使用ViewPager + Fragment实现滑动菜单Tab效果 --简易版
描述: 之前有做过一个记账本APP,拿来练手的,做的很简单,是用Eclipse开发的: 最近想把这个APP重新完善一下,添加了一些新的功能,并选用Android Studio来开发: APP已经完善了 ...
- Session Cookies随笔
1.对于Session而言 它是用来保存在服务端的信息,可以用来做登录验证,在后台保存有用信息. 一个浏览器访问一个网站,就是建立一个连接,连接信息是独立的,就是在该建立的连接内,保存到Session ...