BZOJ4170:极光(CDQ分治)
Description
Input
Output
对于每次询问操作,输出一个非负整数表示答案
Sample Input
2 4 3
Query 2 2
Modify 1 3
Query 2 2
Modify 1 2
Query 1 1
Sample Output
3
3
Solution
设一个点的坐标为$(x,a[x])$,然后发现$graze(x,i) \leq k$的点就是曼哈顿距离到$x$点距离小于等于$k$的点。
但这玩意儿好像是个斜着的正方形?咋矩形求和啊……话说我是不是之前做$K-D~Tree$的时候看过一个什么曼哈顿转切比雪夫的?
曼哈顿$(x,a[x])->$切比雪夫$(x+a[x],x-a[x])$,切比雪夫计算两点距离好像是横纵坐标差的$max$?
这样转下切比雪夫然后一个点要查询的点不就成了一个正着的正方形内的点的个数了么……
这样好像就可以矩形求和了啊……发现那个什么鬼畜历史版本就是扯淡?不就是加入一个点么…
$PS:$此题数据范围描述是假的!
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000009)
using namespace std; struct Que{int x,y,opt,v;}Q[N],tmp[N];
int n,m,q_num,cnt,a[N],c[N],ans[N];
char opt[]; inline int read()
{
int x=,w=; char c=getchar();
while (c<'' || c>'') {if (c=='-') w=-; c=getchar();}
while (c>='' && c<='') x=x*+c-'', c=getchar();
return x*w;
} void Update(int x,int k)
{
for (; x<=1e6; x+=(x&-x)) c[x]+=k;
} int Query(int x)
{
int ans=;
for (; x; x-=(x&-x)) ans+=c[x];
return ans;
} void CDQ(int l,int r)
{
if (l==r) return;
int mid=(l+r)>>;
CDQ(l,mid); CDQ(mid+,r);
int i=l,j=mid+,k=l-;
while (i<=mid || j<=r)
if (j>r || i<=mid && (Q[i].x<Q[j].x || Q[i].x==Q[j].x && Q[i].opt<Q[j].opt))
{
if (Q[i].opt==) Update(Q[i].y,);
tmp[++k]=Q[i]; ++i;
}
else
{
if (Q[j].opt==)
{
if (Q[j].v>) ans[Q[j].v]+=Query(Q[j].y);
else ans[-Q[j].v]-=Query(Q[j].y);
}
tmp[++k]=Q[j]; ++j;
}
for (int i=l; i<=mid; ++i) if (Q[i].opt==) Update(Q[i].y,-);
for (int i=l; i<=r; ++i) Q[i]=tmp[i];
} int main()
{
n=read(); m=read();
for (int i=; i<=n; ++i)
{
a[i]=read();
Q[++q_num]=(Que){i+a[i],i-a[i],,};
}
for (int i=; i<=m; ++i)
{
scanf("%s",opt); int x=read(),k=read();
if (opt[]=='M') a[x]=k, Q[++q_num]=(Que){x+k,x-k,,};
else
{
++cnt;
Q[++q_num]=(Que){x+a[x]+k,x-a[x]+k,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]-k-,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]+k,,-cnt};
Q[++q_num]=(Que){x+a[x]+k,x-a[x]-k-,,-cnt};
}
}
for (int i=; i<=q_num; ++i) Q[i].x+=, Q[i].y+=;
CDQ(,q_num);
for (int i=; i<=cnt; ++i) printf("%d\n",ans[i]);
}
BZOJ4170:极光(CDQ分治)的更多相关文章
- BZOJ4170 极光(CDQ分治 或 树套树)
传送门 BZOJ上的题目没有题面-- [样例输入] 3 5 2 4 3 Query 2 2 Modify 1 3 Query 2 2 Modify 1 2 Query 1 1 [样例输出] 2 3 3 ...
- 【教程】简易CDQ分治教程&学习笔记
前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦! CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...
- BZOJ 2683 简单题 ——CDQ分治
[题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...
- HDU5618 & CDQ分治
Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...
- 初识CDQ分治
[BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 200 ...
- HDU5322 Hope(DP + CDQ分治 + NTT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...
- BZOJ2683 简单题(CDQ分治)
传送门 之前听别人说CDQ分治不难学,今天才知道果真如此.之前一直为自己想不到CDQ的方法二很不爽,今天终于是想出来了一道了,太弱-- cdq分治主要就是把整段区间分成两半,然后用左区间的值去更新右区 ...
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
- 【BZOJ-3262】陌上花开 CDQ分治(3维偏序)
3262: 陌上花开 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1439 Solved: 648[Submit][Status][Discuss ...
随机推荐
- JavaScript 深入之从原型到原型链
1 .构造函数创建对象 我们先使用构造函数创建一个对象: function Person(){ } var p = new Person(); p.name = 'ccy'; console.log( ...
- HAProxy(三):Keeplived+HAProxy搭建高可用负载均衡动静分离架构基础配置示例
一.安装环境 1.软件版本 HAProxy:1.5.18 Keepalived:1.3.5 Nginx:1.12.2 PHP:7.2 系统版本:CentOS 7.4 2.IP分配与架构图 3.安装软件 ...
- IdentityServer4 中文文档 -6- (简介)示例服务器和测试
IdentityServer4 中文文档 -6- (简介)示例服务器和测试 原文:http://docs.identityserver.io/en/release/intro/test.html 目 ...
- override与new的区别
using System; namespace ConsoleAppDemo { class BaseClass { public void Fun() { Console.WriteLine(&qu ...
- 图片上传预览js
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 关于 IdentityServer 部署到生产环境相关问题踩坑记录
Idsr 定义了几种模式适用于不同的场景: // // 摘要: // OpenID Connect flows. public enum Flows { // // 摘要: // authorizat ...
- Mongodb的基本语法
前段时间工作上面由于没有多少事所以玩了玩mongodb,学习了它的基本语法,然后现在在这里做一个简单的总结. 1.我是在win平台上面,启动的话比较麻烦,所以我就简单的把启动过程做了个批处理文件 启动 ...
- elasticsearch6.7 05. Document APIs(4)Delete API
3.Delete API delete API 可以让你删除一个特定id的文档,下面例子删除twitter索引中_doc类型.id为1的文档: DELETE /twitter/_doc/1 返回结果: ...
- Perl爬虫的简单实现
由于工作中有个项目需要爬取第三方网站的内容,所以在Linux下使用Perl写了个简单的爬虫. 相关工具 1. HttpWatch/浏览器开发人员工具 一般情况下这个工具是用不到的,但是如果你发现要爬取 ...
- Apache SkyWalking的架构设计【译文】
Apache SkyWalking提供了一个功能强大并且很轻量级的后端.在此,将介绍为什么采用以下方式来设计它,以及它又是如何工作的. 架构图 对于APM而言,agent或SDKs仅是如何使用libs ...