绘制COCO数据集结果
import os
import time
import datetime
import mmcv
import cv2 as cv
import json
import numpy as np
import pycocotools.mask as maskutil
import pycocotools.coco as COCO
from itertools import groupby
from skimage import measure,draw,data
from PIL import Image def close_contour(contour):
if not np.array_equal(contour[0], contour[-1]):
contour = np.vstack((contour, contour[0]))
return contour def binary_mask_to_polygon(binary_mask, tolerance=0):
"""Converts a binary mask to COCO polygon representation
Args:
binary_mask: a 2D binary numpy array where '1's represent the object
tolerance: Maximum distance from original points of polygon to approximated
polygonal chain. If tolerance is 0, the original coordinate array is returned.
"""
polygons = []
# pad mask to close contours of shapes which start and end at an edge
padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
contours = measure.find_contours(padded_binary_mask, 0.5)
contours = np.subtract(contours, 1)
for contour in contours:
contour = close_contour(contour)
contour = measure.approximate_polygon(contour, tolerance)
if len(contour) < 3:
continue
contour = np.flip(contour, axis=1)
segmentation = contour.ravel().tolist()
# after padding and subtracting 1 we may get -0.5 points in our segmentation
segmentation = [0 if i < 0 else i for i in segmentation]
polygons.append(segmentation) return polygons def binary_mask_to_rle(binary_mask):
rle = {'counts': [], 'size': list(binary_mask.shape)}
counts = rle.get('counts')
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
if i == 0 and value == 1:
counts.append(0)
counts.append(len(list(elements)))
return rle def main2():
seg=np.array([312.29, 562.89, 402.25, 511.49, 400.96, 425.38, 398.39, 372.69, 388.11, 332.85, 318.71, 325.14, 295.58, 305.86, 269.88, 314.86, 258.31, 337.99, 217.19, 321.29, 182.49, 343.13, 141.37, 348.27, 132.37, 358.55, 159.36, 377.83, 116.95, 421.53, 167.07, 499.92, 232.61, 560.32, 300.72, 571.89])
compactedRLE = maskutil.frPyObjects([seg], 768, 768)
print(compactedRLE)
#compactedRLE=[
# {"size":[768, 768],
# "counts": "`eQ66ig02O1O000000000000000000000000001O00000000000000000000000000000000000000000000000000000000O2O0NbZj:"
# }]
mask = maskutil.decode(compactedRLE)
mask=np.reshape(mask,(768,768))
mask[:,:]=mask[:,:]*255
print(mask)
#mmcv.imshow(mask) '''
mask=np.array(
[
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]
]
)
print(mask)
''' poly=binary_mask_to_polygon(mask)
print(poly)
rle=binary_mask_to_rle(mask)
print(rle)
#mmcv.imshow(area) return 0 def class2color(classes=1,class_id=0):
sum = classes*12357
return [sum%(class_id+0),sum%(class_id+1),sum%(class_id+2)] def mainContour():
imgfile = "/home/wit/Pictures/7dd98d1001e9390100d9e95171ec54e737d19681.jpg"
img = cv.imread(imgfile)
h, w, _ = img.shape gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 127, 255, cv.THRESH_BINARY) # Find Contour
_, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
print(contours) def main():
testimagepath = "/media/wit/WeiJX/AirbusShip/coco-labels/instances_ships_test2018.json"
compressedRLECOCOlabelpath = "/media/wit/WeiJX/workspace/out/maskrcnn.reorg.pkl.json"
imageprefix = "/media/wit/WeiJX/AirbusShip/test-images/" startTime = time.time()
trthset = json.load(open(testimagepath, 'r'))
assert type(trthset) == dict, 'annotation file format {} not supported'.format(type(trthset))
prdcset = json.load(open(compressedRLECOCOlabelpath, 'r'))
assert type(prdcset) == dict, 'annotation file format {} not supported'.format(type(prdcset))
print('Done (t={:0.2f}s)'.format(time.time() - startTime)) ann_Y0 = trthset['annotations']
ann_Y1 = prdcset['annotations'] for image in trthset['images']:
imagepath = imageprefix+image['file_name']
img = cv.imread(imagepath) src = np.zeros((768,768,3), np.uint8)
src[:,:,:]=img[:,:,:]
dst = np.zeros((768,768,3), np.uint8)
dst[:,:,:]=img[:,:,:] masks = np.zeros((768, 768, 1), np.uint8)
masks.fill(0)
id0 = image['id'] counts = 0 contours = []
for target in ann_Y0:
if target['image_id']==id0:
counts += 1
j=0
X=[]
Y=[]
for seg in target['segmentation'][0]:
if j == 0:
x = float(seg)
X.append(x)
else:
y = float(seg)
Y.append(y)
j = 1-j rr, cc = draw.polygon(Y, X)
draw.set_color(src, [rr, cc], [0, 0, 255], 0.4) Point = np.zeros((len(Y), 2), dtype='int32')
Point [:, 0] = X[:]
Point [:, 1] = Y[:]
#print(Point)
cv.fillPoly(masks, np.array([Point],'int32'), 1)
src[:, :, 0] = img[:, :, 0] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
src[:, :, 1] = img[:, :, 1] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
src[:, :, 2] = img[:, :, 2] * 0.2 + masks[:, :, 0] * 0.8 * 255.0 / counts mmcv.imshow(src,"Y",1) masks.fill(0)
counts = 0
for target in ann_Y1:
if target['image_id']==id0:
counts += 1
CRLE = target['segmentation']
#print(CRLE)
mask = maskutil.decode(CRLE)
mask = np.reshape(mask, (img.shape[1], img.shape[0], 1))
masks[:, :] = masks[:, :] + mask[:, :] dst[:, :, 0] = img[:, :, 0] * 0.2 + masks[:, :, 0] * 0.8 * 255.0/counts
dst[:, :, 1] = img[:, :, 1] #* 0.5 + masks[:, :, 0] * 0.5 * 255.0/counts
dst[:, :, 2] = src[:, :, 2] * 0.9 + masks[:, :, 0] * 0.1 * 255.0/counts
mmcv.imshow(dst,"Y'") return 0 if __name__ == '__main__':
main()
绘制COCO数据集结果的更多相关文章
- [PocketFlow]解决TensorFLow在COCO数据集上训练挂起无输出的bug
1. 引言 因项目要求,需要在PocketFlow中添加一套PeleeNet-SSD和COCO的API,具体为在datasets文件夹下添加coco_dataset.py, 在nets下添加pelee ...
- COCO 数据集的使用
Windows 10 编译 Pycocotools 踩坑记 COCO数据库简介 微软发布的COCO数据库, 除了图片以外还提供物体检测, 分割(segmentation)和对图像的语义文本描述信息. ...
- COCO数据集深入理解
TensorExpand/TensorExpand/Object detection/Data_interface/MSCOCO/ 深度学习数据集介绍及相互转换 Object segmentation ...
- COCO 数据集使用说明书
下面的代码改写自 COCO 官方 API,改写后的代码 cocoz.py 被我放置在 Xinering/cocoapi.我的主要改进有: 增加对 Windows 系统的支持: 替换 defaultdi ...
- Pascal VOC & COCO数据集介绍 & 转换
目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. Segmentat ...
- 在ubuntu1604上使用aria2下载coco数据集效率非常高
简单的下载方法: 所以这里介绍一种能照顾大多数不能上外网的同学的一种简单便捷,又不会中断的下载方法:系统环境: Ubuntu 14.04 方法: a. 使用aria2 搭配命令行下载.需要先安装: s ...
- MS coco数据集下载
2017年12月02日 23:12:11 阅读数:10411 登录ms-co-co数据集官网,一直不能进入,FQ之后开看到下载链接.有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所 ...
- coco数据集标注图转为二值图python(附代码)
coco数据集大概有8w张以上的图片,而且每幅图都有精确的边缘mask标注. 后面后分享一个labelme标注的json或xml格式转二值图的源码(以备以后使用) 而我现在在研究显著性目标检测,需要的 ...
- COCO数据集使用
一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keyp ...
随机推荐
- 阅历>感悟
1.强扭的瓜不甜.在招聘的时候,面试官看不上你,你也不用赖着要去,你去能干好工作吗?面试官通常比你更清楚这个是事情.在比如谈恋爱,姑娘有更好的目标,不喜欢你了,决定离开你了,你再怎么挽留都是没意义的, ...
- 下载Crypto,CyCrypto,PyCryptodome 报错问题
python下载Crypto,CyCrypto,PyCryptodome,如有site-packages中存在crypto.pycrypto,在pip之前,需要pip3 uninstall crypt ...
- mybatis13--2级缓存
验证内置的2级缓存 Ehcache缓存的配置 01.引入需要的ehcache 和mybatis-ehcache 两个jar包 02.在mapper文件中增加 <cache type=" ...
- 一些方便系统诊断的bash函数
原文地址:一些方便系统诊断的bash函数 一些方便系统诊断的bash函数:http://hongjiang.info/common-bash-functions/ 这段脚本包含100多个bash函数, ...
- GetAsyncKeyState()& 0x8000
0x8000 & GetKeyState(VK_SHIFT); 这句是判断是否有按下shift键. 关于GetAsyncKeyState与GetKeyState区别:关于GetAsyncKey ...
- SpringBoot--web版的ocr
这个项目主要是为了熟悉SpringBoot搭建web项目,及打war包,部署到tomcat中 先贴页面吧 页面很low 毕竟我只是菜鸟,该app程序功能已经写完了,上传图片到服务器,后台接口解析图片中 ...
- 文文---Set,Map
Set和Map Set:类似数组 成员的值是唯一的 下有 add(),has(),delete(),clear(),size 等方法 Map:类似于对象 成员的值是唯一的 下有 set(),has() ...
- HBASE的Java与Javaweb(采用MVC模式)实现增删改查附带源码
项目文件截图 Java运行截图 package domain; import java.io.IOException; import java.util.ArrayList; import java. ...
- day17 十七、时间模块
一.时间模块 import time print(time) # <module 'time' (built-in)> import time print('暂停开始') secs = t ...
- RGBA与Opacity
rgba(r,g,b,a) 都与透明度有关,rgba不会影响文字,opacity则会.