绘制COCO数据集结果
import os
import time
import datetime
import mmcv
import cv2 as cv
import json
import numpy as np
import pycocotools.mask as maskutil
import pycocotools.coco as COCO
from itertools import groupby
from skimage import measure,draw,data
from PIL import Image def close_contour(contour):
if not np.array_equal(contour[0], contour[-1]):
contour = np.vstack((contour, contour[0]))
return contour def binary_mask_to_polygon(binary_mask, tolerance=0):
"""Converts a binary mask to COCO polygon representation
Args:
binary_mask: a 2D binary numpy array where '1's represent the object
tolerance: Maximum distance from original points of polygon to approximated
polygonal chain. If tolerance is 0, the original coordinate array is returned.
"""
polygons = []
# pad mask to close contours of shapes which start and end at an edge
padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
contours = measure.find_contours(padded_binary_mask, 0.5)
contours = np.subtract(contours, 1)
for contour in contours:
contour = close_contour(contour)
contour = measure.approximate_polygon(contour, tolerance)
if len(contour) < 3:
continue
contour = np.flip(contour, axis=1)
segmentation = contour.ravel().tolist()
# after padding and subtracting 1 we may get -0.5 points in our segmentation
segmentation = [0 if i < 0 else i for i in segmentation]
polygons.append(segmentation) return polygons def binary_mask_to_rle(binary_mask):
rle = {'counts': [], 'size': list(binary_mask.shape)}
counts = rle.get('counts')
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
if i == 0 and value == 1:
counts.append(0)
counts.append(len(list(elements)))
return rle def main2():
seg=np.array([312.29, 562.89, 402.25, 511.49, 400.96, 425.38, 398.39, 372.69, 388.11, 332.85, 318.71, 325.14, 295.58, 305.86, 269.88, 314.86, 258.31, 337.99, 217.19, 321.29, 182.49, 343.13, 141.37, 348.27, 132.37, 358.55, 159.36, 377.83, 116.95, 421.53, 167.07, 499.92, 232.61, 560.32, 300.72, 571.89])
compactedRLE = maskutil.frPyObjects([seg], 768, 768)
print(compactedRLE)
#compactedRLE=[
# {"size":[768, 768],
# "counts": "`eQ66ig02O1O000000000000000000000000001O00000000000000000000000000000000000000000000000000000000O2O0NbZj:"
# }]
mask = maskutil.decode(compactedRLE)
mask=np.reshape(mask,(768,768))
mask[:,:]=mask[:,:]*255
print(mask)
#mmcv.imshow(mask) '''
mask=np.array(
[
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0]
]
)
print(mask)
''' poly=binary_mask_to_polygon(mask)
print(poly)
rle=binary_mask_to_rle(mask)
print(rle)
#mmcv.imshow(area) return 0 def class2color(classes=1,class_id=0):
sum = classes*12357
return [sum%(class_id+0),sum%(class_id+1),sum%(class_id+2)] def mainContour():
imgfile = "/home/wit/Pictures/7dd98d1001e9390100d9e95171ec54e737d19681.jpg"
img = cv.imread(imgfile)
h, w, _ = img.shape gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 127, 255, cv.THRESH_BINARY) # Find Contour
_, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
print(contours) def main():
testimagepath = "/media/wit/WeiJX/AirbusShip/coco-labels/instances_ships_test2018.json"
compressedRLECOCOlabelpath = "/media/wit/WeiJX/workspace/out/maskrcnn.reorg.pkl.json"
imageprefix = "/media/wit/WeiJX/AirbusShip/test-images/" startTime = time.time()
trthset = json.load(open(testimagepath, 'r'))
assert type(trthset) == dict, 'annotation file format {} not supported'.format(type(trthset))
prdcset = json.load(open(compressedRLECOCOlabelpath, 'r'))
assert type(prdcset) == dict, 'annotation file format {} not supported'.format(type(prdcset))
print('Done (t={:0.2f}s)'.format(time.time() - startTime)) ann_Y0 = trthset['annotations']
ann_Y1 = prdcset['annotations'] for image in trthset['images']:
imagepath = imageprefix+image['file_name']
img = cv.imread(imagepath) src = np.zeros((768,768,3), np.uint8)
src[:,:,:]=img[:,:,:]
dst = np.zeros((768,768,3), np.uint8)
dst[:,:,:]=img[:,:,:] masks = np.zeros((768, 768, 1), np.uint8)
masks.fill(0)
id0 = image['id'] counts = 0 contours = []
for target in ann_Y0:
if target['image_id']==id0:
counts += 1
j=0
X=[]
Y=[]
for seg in target['segmentation'][0]:
if j == 0:
x = float(seg)
X.append(x)
else:
y = float(seg)
Y.append(y)
j = 1-j rr, cc = draw.polygon(Y, X)
draw.set_color(src, [rr, cc], [0, 0, 255], 0.4) Point = np.zeros((len(Y), 2), dtype='int32')
Point [:, 0] = X[:]
Point [:, 1] = Y[:]
#print(Point)
cv.fillPoly(masks, np.array([Point],'int32'), 1)
src[:, :, 0] = img[:, :, 0] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
src[:, :, 1] = img[:, :, 1] #* 0.9 + masks[:, :, 0] * 0.1 * 255.0 / counts
src[:, :, 2] = img[:, :, 2] * 0.2 + masks[:, :, 0] * 0.8 * 255.0 / counts mmcv.imshow(src,"Y",1) masks.fill(0)
counts = 0
for target in ann_Y1:
if target['image_id']==id0:
counts += 1
CRLE = target['segmentation']
#print(CRLE)
mask = maskutil.decode(CRLE)
mask = np.reshape(mask, (img.shape[1], img.shape[0], 1))
masks[:, :] = masks[:, :] + mask[:, :] dst[:, :, 0] = img[:, :, 0] * 0.2 + masks[:, :, 0] * 0.8 * 255.0/counts
dst[:, :, 1] = img[:, :, 1] #* 0.5 + masks[:, :, 0] * 0.5 * 255.0/counts
dst[:, :, 2] = src[:, :, 2] * 0.9 + masks[:, :, 0] * 0.1 * 255.0/counts
mmcv.imshow(dst,"Y'") return 0 if __name__ == '__main__':
main()
绘制COCO数据集结果的更多相关文章
- [PocketFlow]解决TensorFLow在COCO数据集上训练挂起无输出的bug
1. 引言 因项目要求,需要在PocketFlow中添加一套PeleeNet-SSD和COCO的API,具体为在datasets文件夹下添加coco_dataset.py, 在nets下添加pelee ...
- COCO 数据集的使用
Windows 10 编译 Pycocotools 踩坑记 COCO数据库简介 微软发布的COCO数据库, 除了图片以外还提供物体检测, 分割(segmentation)和对图像的语义文本描述信息. ...
- COCO数据集深入理解
TensorExpand/TensorExpand/Object detection/Data_interface/MSCOCO/ 深度学习数据集介绍及相互转换 Object segmentation ...
- COCO 数据集使用说明书
下面的代码改写自 COCO 官方 API,改写后的代码 cocoz.py 被我放置在 Xinering/cocoapi.我的主要改进有: 增加对 Windows 系统的支持: 替换 defaultdi ...
- Pascal VOC & COCO数据集介绍 & 转换
目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. Segmentat ...
- 在ubuntu1604上使用aria2下载coco数据集效率非常高
简单的下载方法: 所以这里介绍一种能照顾大多数不能上外网的同学的一种简单便捷,又不会中断的下载方法:系统环境: Ubuntu 14.04 方法: a. 使用aria2 搭配命令行下载.需要先安装: s ...
- MS coco数据集下载
2017年12月02日 23:12:11 阅读数:10411 登录ms-co-co数据集官网,一直不能进入,FQ之后开看到下载链接.有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所 ...
- coco数据集标注图转为二值图python(附代码)
coco数据集大概有8w张以上的图片,而且每幅图都有精确的边缘mask标注. 后面后分享一个labelme标注的json或xml格式转二值图的源码(以备以后使用) 而我现在在研究显著性目标检测,需要的 ...
- COCO数据集使用
一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keyp ...
随机推荐
- UnicodeEncodeError: 'latin-1' codec can't encode characters in position 41-50: ordinal not in range(256)
在处理标题或网址为中文的文件或网页的时候,报UnicodeEncodeError: 'latin-1' codec can't encode characters in position 41-50: ...
- JBPM工作流(七)——详解流程图
概念: 流程图的组成: a. 活动 Activity / 节点 Node b. 流转 Transition / 连线(单向箭头) c. 事件 1.流转(Transition) a) 一般情况一个活动中 ...
- ArcGIS AddIN Sample学习笔记
1.AddInEditorExtension 功能描述:编辑器扩展,实现在编辑要素,对编辑事件的监听,及对新创建的要素的处理 核心代码: void Events_OnStartEditing() { ...
- TCP 套叠字
一. TCP 协议 # ------------TCP套叠字-------------------- server 端 import socket,time ip_port=('localhost' ...
- Java编程基础篇第一章
计算机语言 人与计算机交流的方式. 计算机语言有很多种如:C语言,c++,Java等 人机交互 软件的出现实现了人与计算机之间的更好的交流(交互) 交互方式 图形化界面:便于交互,容易操作,简单直观, ...
- git pull总是要输入账号和密码
如果你用git从远程pull拉取代码,每次都要输入密码,那么执行下面命令即可 git config --global credential.helper store 这个命令则是在你的本地生成一个账号 ...
- C++中的const成员函数(函数声明后加const,或称常量成员函数)用法详解
http://blog.csdn.net/gmstart/article/details/7046140 在C++的类定义里面,可以看到类似下面的定义: 01 class List { 02 priv ...
- 深度学习基础(一)LeNet_Gradient-Based Learning Applied to Document Recognition
作者:Yann LeCun,Leon Botton, Yoshua Bengio,and Patrick Haffner 这篇论文内容较多,这里只对部分内容进行记录: 以下是对论文原文的翻译: 在传统 ...
- VoiceXML标识元素及其属性
VoiceXML 元素 <assign> 给变量赋值. <audio> 播放语音文件. <block> 无用户交互的可执行代码块. <catch> 捕获 ...
- MySQL行转列与列转行
行转列 例如:把图1转换成图2结果展示 图1 图2 CREATE TABLE `TEST_TB_GRADE` ( `ID` ) NOT NULL AUTO_INCREMENT, `) DEFAULT ...