假设初始流为每条边的下界。但这样可能流量会不守恒,我们需要在上面加上一个附加流使流量守恒。只要让每个点开始的出/入流量与原初始流相等就可以求出附加流了。那么新建超源S超汇T,令degree[i]表示流入i的边的下界之和-从i流出的边的下界之和。

  若degree[i]>0,则表示需要有额外degree[i]的流量流入i来达到流量平衡,那么从S向i连上界为degree[i]的边。

  若degree[i]<0,则表示需要有额外degree[i]的流量从i流出来达到流量平衡,那么从i向T连上界为-degree[i]的边。

  跑最大流就可以求出附加流。显然maxflow<=sigma(degree[i])。如果maxflow=sigma(degree[i]),那么有可行流。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 210
#define M 50000
#define S 0
#define T 201
#define inf 1000000000
int n,m,t=-,p[N],degree[N],l[M],tot=;
int cur[N],d[N],q[N],ans=;
struct data{int to,nxt,cap,flow;
}edge[M];
void addedge(int x,int y,int z)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,p[y]=t;
}
bool bfs()
{
memset(d,,sizeof(d));d[S]=;
int head=,tail=;q[]=S;
do
{
int x=q[++head];
for (int i=p[x];~i;i=edge[i].nxt)
if (d[edge[i].to]==-&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+;
q[++tail]=edge[i].to;
}
}while (head<tail);
return ~d[T];
}
int work(int k,int f)
{
if (k==T) return f;
int used=;
for (int i=cur[k];~i;i=edge[i].nxt)
if (d[k]+==d[edge[i].to])
{
int w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow));
edge[i].flow+=w,edge[i^].flow-=w;
if (edge[i].flow<edge[i].cap) cur[k]=i;
used+=w;if (used==f) return f;
}
if (used==) d[k]=-;
return used;
}
void dinic()
{
while (bfs())
{
memcpy(cur,p,sizeof(p));
ans+=work(S,inf);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj115.in","r",stdin);
freopen("loj115.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read(),m=read();
memset(p,,sizeof(p));
for (int i=;i<=m;i++)
{
int x=read(),y=read(),low=read(),high=read();
addedge(x,y,high-low);
degree[y]+=low,degree[x]-=low;
l[i]=low;
}
for (int i=;i<=n;i++)
if (degree[i]>) addedge(S,i,degree[i]),tot+=degree[i];
else if (degree[i]<) addedge(i,T,-degree[i]);
dinic();
if (ans<tot) cout<<"NO";
else
{
cout<<"YES\n";
for (int i=;i<=m;i++)
printf("%d\n",edge[i-<<].flow+l[i]);
}
return ;
}

LOJ115 无源汇有上下界可行流(上下界网络流)的更多相关文章

  1. 【LOJ115】无源汇有上下界可行流(模板题)

    点此看题面 大致题意: 给你每条边的流量上下界,让你判断是否存在可行流.若有,则还需输出一个合法方案. 大致思路 首先,每条边既然有一个流量下界\(lower\),我们就强制它初始流量为\(lower ...

  2. LOJ [#115. 无源汇有上下界可行流](https://loj.ac/problem/115)

    #115. 无源汇有上下界可行流 先扔个板子,上下界的东西一点点搞,写在奇怪的合集里面 Code: #include <cstdio> #include <cstring> # ...

  3. ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...

  4. 2018.08.20 loj#115. 无源汇有上下界可行流(模板)

    传送门 又get到一个新技能,好兴奋的说啊. 一道无源汇有上下界可行流的模板题. 其实这东西也不难,就是将下界变形而已. 准确来说,就是对于每个点,我们算出会从它那里强制流入与流出的流量,然后与超级源 ...

  5. hdu 4940 Destroy Transportation system (无源汇上下界可行流)

    Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  6. zoj 2314 Reactor Cooling (无源汇上下界可行流)

    Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...

  7. [loj#115] 无源汇有上下界可行流 网络流

    #115. 无源汇有上下界可行流 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题 ...

  8. zoj2314 无源汇上下界可行流

    题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...

  9. loj#115. 无源汇有上下界可行流

    \(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \ ...

  10. Zoj 2314 Reactor Cooling(无源汇有上下界可行流)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:    给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...

随机推荐

  1. 开源HTTP解析器---http-parser和fast-http

    由于项目中遇到需要发送http请求,然后再解析接收到的响应.大概在网上搜索了一下,有两个比较不错,分别是http-parser和fast-http. http-parser是由C编写的工具:fast- ...

  2. 【LGR-048 五周年庆贺】洛谷6月月赛

    Luogu的五周年庆典比赛,还是比较满意的. 题目清新不毒瘤,数据优质不卡常,解法自然,为出题人点赞. 前三题的难度都很低,T5个人感觉还好.但是最后那个splay+hash是什么神仙东西. 最后好像 ...

  3. macaca使用中问题解决方法整理

    报告老板:很多同学在搭建macaca的环境时候,出现了各种问题,尤其是使用windows的同学,更是复杂且费劲的要命,我这里针对一些遇到的坑,按照从头的搭建开始说起,如下 基本的搭建条件要满足基础环境 ...

  4. 基于RC4加密算法的图像加密

    基于RC4加密算法的图像加密 某课程的一个大作业内容,对图像加密.项目地址:https://gitee.com/jerry323/RC4_picture 这里使用的是RC4(流.对称)加密算法,算法流 ...

  5. Linux运维笔记-日常操作命令总结(2)

    回想起来,从事linux运维工作已近5年之久了,日常工作中会用到很多常规命令,之前简单罗列了一些命令:http://www.cnblogs.com/kevingrace/p/5985486.html今 ...

  6. 分布式监控系统Zabbix-3.0.3-新版微信报警(企业微信取代企业号)

    一般来说,Zabbix可以通过多种方式把告警信息发送到指定人,常用的有邮件,短信报警方式,但是现在越来越多的企业开始使用zabbix结合微信作为主要的告警方式,这样可以及时有效的把告警信息推送到接收人 ...

  7. MFS+Keepalived双机高可用热备方案操作记录

    基于MFS的单点及手动备份的缺陷,考虑将其与Keepalived相结合以提高可用性.在Centos下MooseFS(MFS)分布式存储共享环境部署记录这篇文档部署环境的基础上,只需要做如下改动: 1) ...

  8. python-深浅copy-18

    # 赋值运算l1 = [1,2,3]l2 = l1l1.append('a')print(l1,l2) # [1, 2, 3, 'a'] [1, 2, 3, 'a'] #copyl1 = [1,2,3 ...

  9. 安装Visual Studio 2013以及简单使用

    首先,在网上找到安装Visual Studio 2013的教程以及相关软件资源http://jingyan.baidu.com/article/09ea3ede3b2496c0afde3944.htm ...

  10. #个人博客作业Week1——流行的源程序版本管理软件和项目管理软件

    1.TFS(Team Foundation Server)(1)定义:TFS是一个高可扩展.高可用.高性能.面向互联网服务的分布式文件系统,主要针对海量的非结构化数据,          它构筑在普通 ...