BZOJ2141排队——树状数组套权值线段树(带修改的主席树)
题目描述
输入
输出
输出文件共m行,第i行一个正整数表示交换操作i结束后,序列的杂乱程度。
样例输入
3
130 150 140
2
2 3
1 3
样例输出
0
3
【样例说明】
未进行任何操作时,(2,3)满足条件;
操作1结束后,序列为130 140 150,不存在满足i<j且hi>hj的(i,j)对;
操作2结束后,序列为150 140 130,(1,2),(1,3),(2,3)共3对满足条件的(i,j)
#include<set>
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,m;
int x,y;
int tot;
int cnt;
int ans;
int s[20010];
int t[20010];
int a[20010];
int b[20010];
int v[20010];
int root[20010];
int ls[10000010];
int rs[10000010];
int sum[10000010];
void add(int x)
{
for(int i=x;i<=tot;i+=i&-i)
{
v[i]++;
}
}
int ask(int x)
{
int res=0;
for(int i=x;i;i-=i&-i)
{
res+=v[i];
}
return res;
}
void change(int &rt,int l,int r,int k,int v)
{
if(!rt)
{
rt=++cnt;
}
if(l==r)
{
sum[rt]+=v;
return ;
}
sum[rt]+=v;
int mid=(l+r)>>1;
if(k<=mid)
{
change(ls[rt],l,mid,k,v);
}
else
{
change(rs[rt],mid+1,r,k,v);
}
}
int query_min(int l,int r,int k)
{
int res=0;
if(l==r)
{
return res;
}
int mid=(l+r)>>1;
if(k<=mid)
{
for(int i=1;i<=s[0];i++)
{
s[i]=ls[s[i]];
}
for(int i=1;i<=t[0];i++)
{
t[i]=ls[t[i]];
}
return query_min(l,mid,k);
}
else
{
for(int i=1;i<=s[0];i++)
{
res+=sum[ls[s[i]]];
s[i]=rs[s[i]];
}
for(int i=1;i<=t[0];i++)
{
res-=sum[ls[t[i]]];
t[i]=rs[t[i]];
}
return res+query_min(mid+1,r,k);
}
}
int query_max(int l,int r,int k)
{
int res=0;
if(l==r)
{
return res;
}
int mid=(l+r)>>1;
if(k<=mid)
{
for(int i=1;i<=s[0];i++)
{
res+=sum[rs[s[i]]];
s[i]=ls[s[i]];
}
for(int i=1;i<=t[0];i++)
{
res-=sum[rs[t[i]]];
t[i]=ls[t[i]];
}
return res+query_max(l,mid,k);
}
else
{
for(int i=1;i<=s[0];i++)
{
s[i]=rs[s[i]];
}
for(int i=1;i<=t[0];i++)
{
t[i]=rs[t[i]];
}
return query_max(mid+1,r,k);
}
}
void updata(int x,int k,int v)
{
for(int i=x;i<=n;i+=i&-i)
{
change(root[i],1,tot,k,v);
}
}
int find_max(int l,int r,int k)
{
s[0]=t[0]=0;
for(int i=r;i;i-=i&-i)
{
s[++s[0]]=root[i];
}
for(int i=l;i;i-=i&-i)
{
t[++t[0]]=root[i];
}
return query_max(1,tot,k);
}
int find_min(int l,int r,int k)
{
s[0]=t[0]=0;
for(int i=r;i;i-=i&-i)
{
s[++s[0]]=root[i];
}
for(int i=l;i;i-=i&-i)
{
t[++t[0]]=root[i];
}
return query_min(1,tot,k);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+1,b+1+n);
tot=unique(b+1,b+1+n)-b-1;
for(int i=1;i<=n;i++)
{
a[i]=lower_bound(b+1,b+1+tot,a[i])-b;
ans+=ask(tot)-ask(a[i]);
add(a[i]);
updata(i,a[i],1);
}
printf("%d\n",ans);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
ans+=find_min(x,y-1,a[y]);
ans-=find_max(x,y-1,a[y]);
ans-=find_min(x,y-1,a[x]);
ans+=find_max(x,y-1,a[x]);
updata(x,a[x],-1);
updata(y,a[y],-1);
swap(a[x],a[y]);
updata(x,a[x],1);
updata(y,a[y],1);
if(a[x]>a[y])
{
ans++;
}
else if(a[x]<a[y])
{
ans--;
}
printf("%d\n",ans);
}
}
BZOJ2141排队——树状数组套权值线段树(带修改的主席树)的更多相关文章
- luogu3380/bzoj3196 二逼平衡树 (树状数组套权值线段树)
带修改区间K大值 这题有很多做法,我的做法是树状数组套权值线段树,修改查询的时候都是按着树状数组的规则找出那log(n)个线段树根,然后一起往下做 时空都是$O(nlog^2n)$的(如果离散化了的话 ...
- CF1093E Intersection of Permutations 树状数组套权值线段树
\(\color{#0066ff}{ 题目描述 }\) 给定整数 \(n\) 和两个 \(1,\dots,n\) 的排列 \(a,b\). \(m\) 个操作,操作有两种: \(1\ l_a\ r_a ...
- Dynamic Rankings(树状数组套权值线段树)
Dynamic Rankings(树状数组套权值线段树) 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[ ...
- [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)
[BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...
- 【树状数组套权值线段树】bzoj1901 Zju2112 Dynamic Rankings
谁再管这玩意叫树状数组套主席树我跟谁急 明明就是树状数组的每个结点维护一棵动态开结点的权值线段树而已 好吧,其实只有一个指针,指向该结点的权值线段树的当前结点 每次查询之前,要让指针指向根结点 不同结 ...
- 刷题总结——骑士的旅行(bzoj4336 树链剖分套权值线段树)
题目: Description 在一片古老的土地上,有一个繁荣的文明. 这片大地几乎被森林覆盖,有N座城坐落其中.巧合的是,这N座城由恰好N-1条双 向道路连接起来,使得任意两座城都是连通的.也就是说 ...
- BZOJ1146[CTSC2008]网络管理——出栈入栈序+树状数组套主席树
题目描述 M公司是一个非常庞大的跨国公司,在许多国家都设有它的下属分支机构或部门.为了让分布在世界各地的N个 部门之间协同工作,公司搭建了一个连接整个公司的通信网络.该网络的结构由N个路由器和N-1条 ...
- BZOJ 2120 数颜色(树状数组套主席树)
1A啊,激动. 首先,不修改的情况下可以直接用主席树搞,修改的话,直接用主席树搞一次修改的情况下复杂度是O(nlogn)的. 就像你要求区间和一样,用前缀和查询是O(1),修改是O(n),只不过主席树 ...
- LUOGU P2617 Dynamic Rankings(树状数组套主席树)
传送门 解题思路 动态区间第\(k\)大,树状数组套主席树模板.树状数组的每个位置的意思的是每棵主席树的根,维护的是一个前缀和.然后询问的时候\(log\)个点一起做前缀和,一起移动.时空复杂度\(O ...
随机推荐
- 随笔一个dom节点绑定事件
以下利用jquery说明: js中,给一个dom节点绑定事件再平常不过了.这里说下,如果dom经常发生变化的话,给这个dom绑定事件的情况. 比如代码如下: li的节点,绑定了事件:点击会打出来里头的 ...
- @media响应式的屏幕适配
当页面小于960px的时候执行 @media screen and (max-width: 960px){ body{ background: #000; } } 等于960px尺寸的代码 @medi ...
- 欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法
[欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ( ...
- REST-framework快速构建API--源码解析
一.APIView 通过APIView实现API的过程如下: urls.py url(r'^books/$', views.BookView.as_view(),name="books&qu ...
- Spring学习日志之纯Java配置的MVC框架搭建
依赖引入 <dependencies> <dependency> <groupId>javax.servlet</groupId> <artifa ...
- 【微服务】使用spring cloud搭建微服务框架,整理学习资料
写在前面 使用spring cloud搭建微服务框架,是我最近最主要的工作之一,一开始我使用bubbo加zookeeper制作了一个基于dubbo的微服务框架,然后被架构师否了,架构师曰:此物过时.随 ...
- python之requests
发送请求 导入 Requests 模块: >>> import requests >>> r = requests.get('https://xxxxxxx.jso ...
- Python_函数_复习_习题_24
# 函数 # 可读性强 复用性强# def 函数名(): # 函数体 #return 返回值# 所有的函数 只定义不调用就一定不执行 #先定义后调用 #函数名() #不接收返回值#返回值 = 函数名( ...
- CentOS 6.7下 Samba服务器的搭建与配置(share共享模式)
https://www.linuxidc.com/Linux/2016-12/138220.htm
- linux及安全第五周总结
给MenuOS增加time和time-asm命令 中间过程已省略了,我们所做的只是将menu更新 具体命令如下 rm menu -rf 强制删除 git clone http://github.com ...