P1856 [USACO5.5]矩形周长Picture

题目背景

墙上贴着许多形状相同的海报、照片。它们的边都是水平和垂直的。每个矩形图片可能部分或全部的覆盖了其他图片。所有矩形合并后的边长称为周长。

题目描述

编写一个程序计算周长。

如图1所示7个矩形。

如图2所示,所有矩形的边界。所有矩形顶点的坐标都是整数。

输入输出格式

输入格式:

输入文件的第一行是一个整数N(0<=N<5000),表示有多少个矩形。接下来N行给出了每一个矩形左下角坐标和右上角坐标(所有坐标的数值范围都在-10000到10000之间)。

输出格式:

输出文件只有一个正整数,表示所有矩形的周长。

输入输出样例

输入样例#1:

7
-15 0 5 10
-5 8 20 25
15 -4 24 14
0 -6 16 4
2 15 10 22
30 10 36 20
34 0 40 16
输出样例#1:

228

求周长和,不用离散的方法

记录最小值和最小值出现的个数

#include <cstdio>
#include <algorithm>
using namespace std;
#define N 10005
int n,x1[N],y1[N],x2[N],y2[N];
struct node{int x1,x2,y,op;}line[N];
inline bool cmp(node a,node b){return a.y!=b.y?a.y<b.y:a.op>b.op;}
struct SegmentTree{int l,r,mi,sum,lazy;}Tree[N<<];
inline void pushup(int x)
{
if(Tree[x<<].mi==Tree[x<<|].mi)Tree[x].sum=Tree[x<<].sum+Tree[x<<|].sum, Tree[x].mi=Tree[x<<].mi;
else if(Tree[x<<].mi<Tree[x<<|].mi)Tree[x].sum=Tree[x<<].sum, Tree[x].mi=Tree[x<<].mi;
else Tree[x].sum=Tree[x<<|].sum, Tree[x].mi=Tree[x<<|].mi;
}
inline void ADD(int x,int v){Tree[x].lazy+=v;Tree[x].mi+=v;}
inline void pushdown(int x){ADD(x<<,Tree[x].lazy); ADD(x<<|,Tree[x].lazy); Tree[x].lazy=;}
inline void build(int l,int r,int x)
{
Tree[x].l=l; Tree[x].r=r; Tree[x].lazy=;
if(l==r){Tree[x].sum=;Tree[x].mi=;return;}
int mid=(l+r)>>;build(l,mid,x<<);build(mid+,r,x<<|);pushup(x);
}
inline void updata(int l,int r,int x,int v)
{
if(l==Tree[x].l&&Tree[x].r==r){Tree[x].lazy+=v;Tree[x].mi+=v;return;}
if(Tree[x].lazy!=) pushdown(x); int mid=(Tree[x].l+Tree[x].r)>>;
if(r<=mid)updata(l,r,x<<,v); else if(l>mid) updata(l,r,x<<|,v);
else updata(l,mid,x<<,v), updata(mid+,r,x<<|,v); pushup(x);
}
int main()
{
int i,ans=; scanf("%d",&n);
for(i=;i<=n;i++)
{
scanf("%d%d%d%d",&x1[i],&y1[i],&x2[i],&y2[i]);
line[i*-].x1=line[i*].x1=x1[i]; line[i*-].x2=line[i*].x2=x2[i]-;
line[i*-].y=y1[i]; line[i*].y=y2[i]; line[i*-].op=; line[i*].op=-;
}n*=;
sort(line+,line+n+,cmp); build(-N,N,);
for(i=;i<=n;i++)
{
int oo=Tree[].sum*(Tree[].mi==); updata(line[i].x1,line[i].x2,,line[i].op); ans+=abs(oo-Tree[].sum*(Tree[].mi==));
}
for(i=;i<=n;i++)
{
line[i*-].x1=line[i*].x1=y1[i]; line[i*-].x2=line[i*].x2=y2[i]-;
line[i*-].y=x1[i]; line[i*].y=x2[i]; line[i*-].op=; line[i*].op=-;
}
sort(line+,line+n+,cmp); build(-N,N,);
for(i=;i<=n;i++)
{
int oo=Tree[].sum*(Tree[].mi==); updata(line[i].x1,line[i].x2,,line[i].op); ans+=abs(oo-Tree[].sum*(Tree[].mi==));
}
printf("%d\n",ans);
}

luogu1856的更多相关文章

  1. luogu1856 [USACO5.5]矩形周长Picture

    看到一坨矩形就要想到扫描线.(poj atantis) 我们把横边竖边分开计算,因为横边竖边其实没有区别,以下论述全为考虑竖边的. 怎样统计一个竖边对答案的贡献呢?答:把这个竖边加入线段树,当前的总覆 ...

  2. Luogu1856 [USACO5.5]矩形周长Picture (线段树扫描线)

    对于横轴,加上与上一次扫描的差值:对于竖轴,加上高度差与区间内不相交线段\(*2\)的积: 难点在pushdown,注意维护覆盖关系.再就注意负数 #include <iostream> ...

随机推荐

  1. PAT A1107 Social Clusters (30 分)——并查集

    When register on a social network, you are always asked to specify your hobbies in order to find som ...

  2. C++ 指针常量和常量指针

    1.指针常量(*const):对应指针变量,即指针本身是常量,指针指向的内容可以被修改. 2.常量指针(const*):常量的指针,即指针指向的内容不能被修改,但指针本身是变量,可以被修改.

  3. BusyBox下tftp命令的使用

    一.简介 BusyBox下的tftp是一款应用于嵌入式开发系统上的一款小巧tftp工具,为开发者提供一个tftp服务的使用平台. 通常是,PC开发主机作为服务器(Server),开发系统(板)作为客户 ...

  4. 扩展 WPF 动画类

    原文:扩展 WPF 动画类 扩展 WPF 动画类                                                                     Charles ...

  5. WPF 模拟UI 键盘录入

    原文:WPF 模拟UI 键盘录入 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/yangyisen0713/article/details/1835 ...

  6. BootStrap学习(6)_模态框

    一.模态框 模态框(Modal)是覆盖在父窗体上的子窗体.通常,目的是显示来自一个单独的源的内容,可以在不离开父窗体的情况下有一些互动.子窗体可提供信息.交互等. 如果只使用该功能,只引入BootSt ...

  7. 验证码处理类:UnCodebase.cs + BauDuAi 读取验证码的值(并非好的解决方案)

    主要功能:变灰,去噪,等提高清晰度等 代码类博客,无需多说,如下: public class UnCodebase { public Bitmap bmpobj; public UnCodebase( ...

  8. UML类图应该怎么看?

    学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 我每次写博基本都是这样开头,除了激励自己,每句话也都挺有道理! 呵呵,今天是阴历2017年我工 ...

  9. Linux中执行脚本参数获取

    Linux中变量$[#,@,0,1,2,*,$,?]含义 $# 是传给脚本的参数个数 $0 是脚本本身的名字 $1 是传递给该shell脚本的第一个参数 $2 是传递给该shell脚本的第二个参数 $ ...

  10. 过渡与动画 - 逐帧动画&steps调速函数

    写在前面 上一篇中我们熟悉五种内置的缓动曲线和(三次)贝塞尔曲线,并且基于此完成了缓动效果. 但是如果我们想要实现逐帧动画,基于贝塞尔曲线的调速函数就显得有些无能为力了,因为我们并不需要帧与帧之间的过 ...