题目意思还是比较直观的,而且这个建模的套路也很明显。

我们首先考虑从主对角线可以转移到哪些状态。

由于每一次操作都不会把同一行(列)的黑色方块分开。因此我们发现:

只要找出\(n\)个黑色棋子,让它们恰好占据所有的行和列即为有解。

所以我们对于所有黑色棋子的位置建边,就是将行和列链接起来。

然后二分图匹配/网络流水一波最大匹配即可,若等于\(n\)就\(Yes\),否则就是\(No\)。

CODE

#include<cstdio>
#include<cstring>
using namespace std;
const int N=205;
struct edge
{
int to,next;
}e[N*N];
int head[N],from[N],cnt,t,n,x,tot;
bool vis[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline void add(int x,int y)
{
e[++cnt].to=y; e[cnt].next=head[x]; head[x]=cnt;
}
inline bool find(int now)
{
for (register int i=head[now];i!=-1;i=e[i].next)
if (!vis[e[i].to-n])
{
vis[e[i].to-n]=1;
if (!from[e[i].to-n]||find(from[e[i].to-n]))
{
from[e[i].to-n]=now; return 1;
}
}
return 0;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j; read(t);
while (t--)
{
memset(head,-1,sizeof(head));
memset(e,-1,sizeof(e));
memset(from,0,sizeof(from));
read(n); tot=cnt=0;
for (i=1;i<=n;++i)
for (j=1;j<=n;++j)
{
read(x); if (x) add(i,j+n);
}
for (i=1;i<=n;++i)
memset(vis,0,sizeof(vis)),tot+=find(i);
puts(tot^n?"No":"Yes");
}
return 0;
}

Luogu P1129 [ZJOI2007]矩阵游戏的更多相关文章

  1. 洛谷 P1129 [ZJOI2007]矩阵游戏 解题报告

    P1129 [ZJOI2007]矩阵游戏 题目描述 小\(Q\)是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个\(N*N\)黑白方阵进行(如同国际象棋一般 ...

  2. 洛谷P1129 [ZJOI2007]矩阵游戏 题解

    题目链接:https://www.luogu.org/problemnew/show/P1129 分析: 这道题不是很好想,但只要想的出来,代码不成问题. 思路1 举几个例子,我们发现, 对于任何数来 ...

  3. 洛谷 [P1129] [ZJOI2007] 矩阵游戏

    这竟然是一道二分图 乍一看,可能是用搜索做,但是这个数据范围,一定会T. 我们观察发现,无论怎样变换,同一行的一定在同一行,同一列的一定还在同一列.所以说,一行只能配一列.这样,我们的目标就是寻找是否 ...

  4. 洛谷P1129 [ZJOI2007] 矩阵游戏

    题目传送门 分析:看到这题呢,首先想到的就是搜索,数据范围也不大嘛.但是仔细思考发现这题用搜索很难做,看了大佬们的题解后学到了,这一类题目要用二分图匹配来做.可以知道,如果想要的话,每一个子都可以移动 ...

  5. P1129 [ZJOI2007]矩阵游戏(二分图,网络流)

    传送门 这推导过程真的有点可怕的说……完全想不出来…… 最终状态是$(1,1),(2,2),(3,3)...(n,n)$都有一个黑点 我们可以理解为每一个行和列都形成了一个匹配 换句话说,只要$n$行 ...

  6. p1129 [ZJOI2007]矩阵游戏

    传送门 分析 不难想到将黑点的行列连边,然后判断最大匹配是否等于n 代码 #include<iostream> #include<cstdio> #include<cst ...

  7. P1129 [ZJOI2007]矩阵游戏 二分图匹配

    思路:脑子+二分图匹配 提交:1次(课上讲过) 题解: 发现:如果符合题意,那么行和列一定是一一匹配的(必要条件),所以最大匹配必须是$n$. 同时我们发现,一定可以通过交换行列的方式,将(看起来)有 ...

  8. luogu [ZJOI2007] 矩阵游戏

    [ZJOI2007] 矩阵游戏 题目描述 小 Q 是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个 \(n \times n\) 黑白方阵进行(如同国际象棋 ...

  9. bzoj 1059: [ZJOI2007]矩阵游戏 二分图匹配

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1891  Solved: 919[Submit][Statu ...

随机推荐

  1. centos7 Linux 安装jdk1.8

    在CentOS7上安装JDK1.8 1 通过 xshell 连接到CentOS7 服务器: 2 进入到目录 /usr/local/ 中(一般装应用环境我们都会在这个目录下装,也可自行选择目录): cd ...

  2. solr-query

    解释: 1.query:获取全部数据的SQL 2.deltaImportQuery:获取增量数据时使用的SQL 3.deltaQuery:获取pk的SQL 4.parentDeltaQuery:获取父 ...

  3. Sql_server基本操作

    使用Sql_server创建表,视图,触发器,存储过程,函数等基本操作. create table test1( /* 创建一个表 */ num int ) alter table test1 /* ...

  4. AspNet Core2 浏览器缓存使用

    Core2中使用Microsoft.AspNetCore.Mvc下的ResponseCacheAttribute特性来控制Http Get请求的缓存 原理是设置http请求 响应头的Cache-con ...

  5. Linux的命名空间详解--Linux进程的管理与调度(二)【转】

    Linux Namespaces机制提供一种资源隔离方案. PID,IPC,Network等系统资源不再是全局性的,而是属于特定的Namespace.每个Namespace里面的资源对其他Namesp ...

  6. 12LaTeX学习系列之---LaTex的图片插入

    目录 目录 前言 (一)插图的基本语法 (二)插入的基本设置 1.说明: 2.源代码: 3.输出效果 (三)查看文档 目录 本系列是有关LaTeX的学习系列,共计19篇,本章节是第12篇. 前一篇:1 ...

  7. webpack热更新和常见错误处理

    时间:2016-11-03 10:50:54 地址:https://github.com/zhongxia245/blog/issues/45 webpack热更新 一.要求 局部刷新修改的地方 二. ...

  8. 使用Gitkraken进行其他Git操作

    使用Gitkraken进行其他Git操作 查看某次 commit 的文件改动 使用 Gitkraken 能非常方便的看到任意一次的 commit 对项目文件的改动. 具体操作是:在树状分支图上单击某个 ...

  9. golang的json序列化问题

    首先看一段代码: package main import ( "encoding/json" "fmt" ) type Result struct { //st ...

  10. msyql备份还原

    MySQL备份和还原,都是利用mysqldump.mysql和source命令来完成的. 1.Win32下MySQL的备份与还原 1.1 备份 开始菜单 | 运行 | cmd |利用“cd \Prog ...