题面

题解

这道题目还有一种比较有意思的解法。

定义一种运算\((\mathbf f\oplus\mathbf g)(x) = \prod\limits_{d\mid x}\mathbf f(d)^{\mathbf g(\frac xd)}\)

研究一下这种运算的性质:

虽然这个运算没有交换律也没有结合律,但是它有一个比较奇特的性质:

设运算\(*\)是狄利克雷卷积,那么可以证明\((\mathbf f \oplus \mathbf g) \oplus \mathbf h = \mathbf f \oplus (\mathbf g * \mathbf h)\)。

于是就有一种基于\(\prod\)的莫比乌斯反演:

\(\mathbf f = \mathbf g \oplus \mathbf 1 \Rightarrow \mathbf g = \mathbf f \oplus \mu\)

也就是\(\mathbf f(x) = \prod_{d|x} \mathbf g(d) \Rightarrow \mathbf g(x) = \prod_{d|x} \mathbf f(d)^{\mu(\frac xd)}\)

那么这道题目就很好推了。

\[\begin{aligned}
&\prod_{i=1}^n\prod_{j=1}^m f[\gcd(i, j)] \\
=&\prod_{i=1}^n\prod_{j=1}^m\prod_{d|i, d|j} \mathbf g(d) \quad (\mathbf g = \mathbf f \oplus \mu) \\
=&\prod_{d=1}^n \mathbf g(d)^{\sum_{d|i}\sum_{d|j}1} \\
=&\prod_{d=1}^n \mathbf g(d)^{\left\lfloor \frac nd\right\rfloor \left\lfloor \frac md\right\rfloor}
\end{aligned}
\]

我们发现\(\mathbf g\)可以\(\mathrm{O}(n\log n)\)算,于是就做完了。

代码

这个代码貌似很古老了QAQ

#include<bits/stdc++.h>
#define RG register
#define clear(x, y) memset(x, y, sizeof(x));
using namespace std; inline int read()
{
int data=0, w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1, ch=getchar();
while(ch>='0'&&ch<='9') data=(data<<3)+(data<<1)+(ch^48), ch=getchar();
return data*w;
} const int mod(1e9+7), maxn(1e6+10), lim(1e6);
inline int fastpow(int x, int y)
{
int ans=1;
while(y)
{
if(y&1) ans=1ll*ans*x%mod;
x=1ll*x*x%mod; y>>=1;
}
return ans;
} int f[maxn], prime[maxn], g[maxn], cnt, inv, sum[maxn], mu[maxn], n, m, T;
bool not_prime[maxn]; inline void init()
{
not_prime[1]=f[1]=g[1]=sum[0]=sum[1]=mu[1]=1;
for(RG int i=2;i<=lim;i++)
{
f[i]=(f[i-1]+f[i-2])%mod;
g[i]=fastpow(f[i], mod-2);
sum[i]=1;
if(!not_prime[i]) prime[++cnt]=i, mu[i]=-1;
for(RG int j=1;j<=cnt && i*prime[j]<=lim;j++)
{
not_prime[i*prime[j]]=true;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}
for(RG int i=1;i<=lim;i++)
{
if(!mu[i]) continue;
for(RG int j=i;j<=lim;j+=i)
sum[j]=1ll*sum[j]*((~mu[i])?f[j/i]:g[j/i])%mod;
}
for(RG int i=1;i<=lim;i++) sum[i]=1ll*sum[i]*sum[i-1]%mod;
} int main()
{
init();
T=read();
while(T--)
{
n=read(); m=read();
if(n>m) swap(n, m);
RG int i=1, j, k, l, tmp, ans=1;
while(i<=n)
{
k=n/i; l=m/i;
j=min(n/k, m/l);
tmp=1ll*sum[j]*fastpow(sum[i-1], mod-2)%mod;
ans=1ll*ans*fastpow(tmp, 1ll*k*l%(mod-1))%mod;
i=j+1;
}
printf("%d\n", (ans+mod)%mod);
}
return 0;
}

【SDOI2017】数字表格的更多相关文章

  1. BZOJ:4816: [Sdoi2017]数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  2. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  3. 【BZOJ 4816】 4816: [Sdoi2017]数字表格 (莫比乌斯)

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 666  Solved: 312 Description Do ...

  4. P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  5. [SDOI2017]数字表格 --- 套路反演

    [SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...

  6. 题解-[SDOI2017]数字表格

    题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...

  7. [SDOI2017]数字表格 & [MtOI2019]幽灵乐团

    P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...

  8. bzoj4816 [Sdoi2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  9. [SDOI2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

  10. 【刷题】BZOJ 4816 [Sdoi2017]数字表格

    Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师 ...

随机推荐

  1. Linux 设备树的解释 - DTB文件格式【转】

    https://blog.csdn.net/cc289123557/article/details/51782449 1.dtb文件格式 dtb文件的格式如下图 : NOTE:不同部分顺序可能不一样 ...

  2. Python实例---模拟微信网页登录(day4)

    第五步: 获取联系人信息---day4代码 settings.py """ Django settings for weixin project. Generated b ...

  3. 4.7 Sublime Text3 中配置 Python环境 --之上安装Sublime 3

    返回总目录 目录: 1.展示效果: 2.缺优分析: 3.下载Sublime Text3 (一)展示效果: 1.能够交互式编写Python代码: 2.可以编写文件式Python代码: 3.能够自动补齐代 ...

  4. 学生与部门管理app-产品功能与界面的简单设计

    学生与部门管理app-产品功能与界面的简单设计 1. 结对成员学号 我:********* 大佬:*******10 2. 需求分析(NABCD模型) 2.1 N-需求 各个部门在开学初占据学校青春广 ...

  5. Pair Programming 2

    学生-社团匹配程序 项目流程: 1. 分析讨论 2. 分工合作 3. 代码规范 4. 编码实现 5. 模块结合 6. 测试修改 7. 数据样例 8. 心得体会 9. GitHub链接 结对队友:陈文举 ...

  6. v-bind指令动态绑定class和内联样式style

    动态绑定class—概述 数据绑定(v-bind指令)一个常见需求是操作元素的 class 列表.因为class是元素的一个属性,我们可以用 v-bind 处理它们 我们只需要计算出表达式最终的字符串 ...

  7. File类_常见的方法(获取系统根目录与指定目录的容量)

    获取系统根目录 import java.io.File; public class File_ListRoots { public static void main(String[] args) { ...

  8. Java没有头文件的原因

    http://bbs.csdn.net/topics/100134244 C/C++ 之所以需要头文件(.h),有两个用处,一个是在开发编译的时候,在各个编译单元(Compile Unit)之间共享同 ...

  9. Android UI开发神兵利器之Android Action Bar Style Generator

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/x359981514/article/details/26283129 ActionBar是3.0后的 ...

  10. [Jsoi2015]染色问题

    题目 看到这个限制条件有点多,我们就一直容斥好了 先容斥颜色,我们枚举至少不用\(i\)种颜色 再容斥列,我们枚举至少不用\(j\)列 最后容斥行,枚举至少不用\(k\)行 容斥系数显然是\((-1) ...