本文好多内容转载自

https://blog.csdn.net/leviopku/article/details/82660381

yolo_v3 提供替换backbone。要想性能牛叉,backbone可以用Darknet-53,要想轻量高速,可以用tiny-darknet

首先,看一下YOLOV3网络结构

DBL: 如图1左下角所示,也就是代码中的Darknetconv2d_BN_Leaky,是yolo_v3的基本组件。就是卷积+BN+Leaky relu。对于v3来说,BN和leaky relu已经是和卷积层不可分离的部分了(最后一层卷积除外),共同构成了最小组件。

resn:n代表数字,有res1,res2, … ,res8等等,表示这个res_block里含有多少个res_unit。这是yolo_v3的大组件,yolo_v3开始借鉴了ResNet的残差结构,使用这种结构可以让网络结构更深(从v2的darknet-19上升到v3的darknet-53,前者没有残差结构)。对于res_block的解释,可以在图1的右下角直观看到,其基本组件也是DBL。

concat:张量拼接。将darknet中间层和后面的某一层的上采样进行拼接。拼接的操作和残差层add的操作是不一样的,拼接会扩充张量的维度,而add只是直接相加不会导致张量维度的改变。

layers数量一共有252层,包括add层23层(主要用于res_block的构成,每个res_unit需要一个add层,一共有1+2+8+8+4=23层)。除此之外,BN层和LeakyReLU层数量完全一样(72层),在网络结构中的表现为:每一层BN后面都会接一层LeakyReLU。卷积层一共有75层,其中有72层后面都会接BN+LeakyReLU的组合构成基本组件DBL。看结构图,可以发现上采样和concat都有2次,和表格分析中对应上。每个res_block都会用上一个零填充,一共有5个res_block

其次,看一下output

对于图1而言,更值得关注的是输出张量:



yolo v3输出了3个不同尺度的feature map,如上图所示的y1, y2, y3。这也是v3论文中提到的为数不多的改进点:predictions across scales

这个借鉴了FPN(feature pyramid networks),采用多尺度来对不同size的目标进行检测,越精细的grid cell就可以检测出越精细的物体。

y1,y2和y3的深度都是255,边长的规律是13:26:52

对于COCO有80个种类,所以每个box应该对每个种类都输出一个概率。

yolo v3设定的是每个网格单元预测3个box,所以每个box需要有(x, y, w, h, confidence)五个基本参数,然后还要有80个类别的概率。所以3*(5 + 80) = 255。这个255就是这么来的。)
v3用上采样的方法来实现这种多尺度的feature map,可以结合图1和图2右边来看,图1中concat连接的两个张量是具有一样尺度的(两处拼接分别是26x26尺度拼接和52x52尺度拼接,通过(2, 2)上采样来保证concat拼接的张量尺度相同)。作者并没有像SSD那样直接采用backbone中间层的处理结果作为feature map的输出,而是和后面网络层的上采样结果进行一个拼接之后的处理结果作为feature map。

最后,总结一下

上文把yolo_v3的结构讨论了一下,下文将对yolo v3的若干细节进行剖析。

Bounding Box Prediction

b-box预测手段是v3论文中提到的又一个亮点。先回忆一下v2的b-box预测:想借鉴faster R-CNN RPN中的anchor机制,但不屑于手动设定anchor prior(模板框),于是用维度聚类的方法来确定anchor box prior(模板框),最后发现聚类之后确定的prior在k=5也能够又不错的表现,于是就选用k=5。后来呢,v2又嫌弃anchor机制线性回归的不稳定性(因为回归的offset可以使box偏移到图片的任何地方),所以v2最后选用了自己的方法:直接预测相对位置。预测出b-box中心点相对于网格单元左上角的相对坐标。



YOLO系列:YOLO v3解析的更多相关文章

  1. YOLO系列梳理(三)YOLOv5

    ​  前言 YOLOv5 是在 YOLOv4 出来之后没多久就横空出世了.今天笔者介绍一下 YOLOv5 的相关知识.目前 YOLOv5 发布了新的版本,6.0版本.在这里,YOLOv5 也在5.0基 ...

  2. 深度剖析YOLO系列的原理

    深度剖析YOLO系列的原理 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/12072225.html 目录 1. ...

  3. YOLO系列梳理(一)YOLOv1-YOLOv3

    ​ 前言 本文是YOLO系列专栏的第一篇,该专栏将会介绍YOLO系列文章的算法原理.代码解析.模型部署等一系列内容.本文系公众号读者投稿,欢迎想写任何系列文章的读者给我们投稿,共同打造一个计算机视觉技 ...

  4. 目标检测复习之YOLO系列

    目标检测之YOLO系列 YOLOV1: blogs1: YOLOv1算法理解 blogs2: <机器爱学习>YOLO v1深入理解 网络结构 激活函数(leaky rectified li ...

  5. 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  6. 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练

    上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格c ...

  7. 小白也能弄懂的目标检测之YOLO系列 - 第一期

    大家好,上期分享了电脑端几个免费无广告且实用的录屏软件,这期想给大家来讲解YOLO这个算法,从零基础学起,并最终学会YOLOV3的Pytorch实现,并学会自己制作数据集进行模型训练,然后用自己训练好 ...

  8. Sharepoint学习笔记—习题系列--70-576习题解析 --索引目录

        Sharepoint学习笔记—习题系列--70-576习题解析  为便于查阅,这里整理并列出了70-576习题解析系列的所有问题,有些内容可能会在以后更新. 需要事先申明的是:     1. ...

  9. Sharepoint学习笔记—习题系列--70-573习题解析 --索引目录

                  Sharepoint学习笔记—习题系列--70-573习题解析 为便于查阅,这里整理并列出了我前面播客中的关于70-573习题解析系列的所有问题,有些内容可能会在以后更新, ...

  10. [置顶] Android学习系列-Android中解析xml(7)

    Android学习系列-Android中解析xml(7) 一,概述 1,一个是DOM,它是生成一个树,有了树以后你搜索.查找都可以做. 2,另一种是基于流的,就是解析器从头到尾解析一遍xml文件.   ...

随机推荐

  1. laravel 中CSS 预编译语言 Sass 快速入门教程

    CSS 预编译语言概述 CSS 作为一门样式语言,语法简单,易于上手,但是由于不具备常规编程语言提供的变量.函数.继承等机制,因此很容易写出大量没有逻辑.难以复用和扩展的代码,在日常开发使用中,如果没 ...

  2. Advanced Wlan Attacks (RADIUS)

    1.查询连接到无线接入点的情况 使用命令 airodump-ng  wlan0mon  可以看到 有用的信息.我们知道如果有一个客户端使用验证码成功连接到. 顺便查一下其中一个连接的设备的MAC地址的 ...

  3. Windows Internals 笔记——错误处理

    1.Windows函数检测到错误时,会使用一种名为“线程本地存储区”的机制将相应的错误代码与“主调线程”关联到一起.这种机制使得不同的线程能独立运行,不会出现相互干扰对方的错误代码的情况. 2.Get ...

  4. Variable binding depth exceeds max-specpdl-size

    (setq max-specpdl-size 5) ; default is 1000, reduce the backtrace level (setq debug-on-error t) ; no ...

  5. python datetime.datetime is not JSON serializable

    1.主要是python  list转换成json时对时间报错:datetime.datetime(2014, 5, 23, 9, 33, 3) is not JSON serializable. 2. ...

  6. SVG 图像入门教程

    http://www.ruanyifeng.com/blog/2018/08/svg.html 一.概述 SVG 是一种基于 XML 语法的图像格式,全称是可缩放矢量图(Scalable Vector ...

  7. UTC时间戳转为时间

    /// <summary> /// 将UTC时间转化DateTime时间 /// </summary> /// <returns></returns> ...

  8. .NetCore 下开发独立的(RPL)含有界面的组件包 (六)实现业务功能

    .NetCore 下开发独立的(RPL)含有界面的组件包 (一)准备工作 .NetCore 下开发独立的(RPL)含有界面的组件包 (二)扩展中间件及服 务 .NetCore 下开发独立的(RPL)含 ...

  9. webpack学习笔记--配置devServer

    devServer 1-6 使用DevServer 介绍过用来提高开发效率的 DevServer ,它提供了一些配置项可以改变 DevServer 的默认行为. 要配置 DevServer ,除了在配 ...

  10. ASP.NET CORE 配置管理

    配置管理简单例子(添加内存配置) using Microsoft.Extensions.Configuration; using System; using System.Collections.Ge ...