▶ 第二章,几个简单的程序

● 代码,单线程

 #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h> #define SIZE (1024*1024)
#define MAXFLOP_ITER 100000000
#define LOOP_COUNT 128
#define FLOP_PER_CALC 2 float fa[SIZE] __attribute__((align()));
float fb[SIZE] __attribute__((align())); double dtime()
{
struct timeval mytime;
gettimeofday(&mytime, (struct timezone*));
return (double)(mytime.tv_sec + mytime.tv_usec*1.0e-6);
} int main(int argc, char *argv[])
{
const float a = 1.1; printf("Initializing\r\n");
for (int i = ; i < SIZE; i++)
{
fa[i] = (float)i + 0.1;
fb[i] = (float)i + 0.2;
} printf("Starting Compute\r\n");
double time_b, time_e;
time_b = dtime();
for (int j = ; j < MAXFLOP_ITER; j++)
{
for (int k = ; k < LOOP_COUNT; k++)
fa[k] = a * fa[k] + fb[k];
}
time_e = dtime(); double gflops = 1.0e-9 * LOOP_COUNT * MAXFLOP_ITER * FLOP_PER_CALC;
printf("GFlops = %10.3lf, Secs = %10.3lf, GFlops per sec = %10.3lf\r\n", gflops, time_e - time_b, gflops / (time_e - time_b)); return ;
}

■ 输出结果

GFlops =     25.600, Secs =      1.464, GFlops per sec =     17.484

● 单核心两线程的 OpenMP(注意总计算量提升了,而不是固定计算量看运行时间减少)

 int main(int argc, char *argv[])
{
const float a = 1.1;
int i, j, k, numthreads; // 循环变量放到外边来 omp_set_num_threads(); // 运行时设置 OpenMP 参数
kmp_set_defaults("KMP_AFFINITY=compact"); #pragma omp parallel
#pragma omp master
numthreads = omp_get_num_threads(); printf("Initializing\r\n");
#pragma omp parallel for
for (i = ; i < SIZE; i++)
{
fa[i] = (float)i + 0.1;
fb[i] = (float)i + 0.2;
}
printf("Starting Compute on %d threads\r\n", numthreads);
double time_b, time_e;
time_b = dtime();
#pragma omp parallel for private(j, k)
for (i = ; i < numthreads; i++)
{
int offset = i * LOOP_COUNT;
for (j = ; j < MAXFLOP_ITER; j++)
{
for (k = ; k < LOOP_COUNT; k++)
fa[k + offset] = a * fa[k + offset] + fb[k + offset];
}
}
time_e = dtime(); double gflops = 1.0e-9 * numthreads * LOOP_COUNT * MAXFLOP_ITER * FLOP_PER_CALC;
printf("GFlops = %10.3lf, Secs = %10.3lf, GFlops per sec = %10.3lf\r\n", gflops, time_e - time_b, gflops / (time_e - time_b)); return ;
}

■ 输出结果

 GFlops =     51.200, Secs =      1.464, GFlops per sec =     34.968

● 线程数、线程亲缘性调整

 // 替换
omp_set_num_threads();
kmp_set_defaults("KMP_AFFINITY=compact");
// 替换为
omp_set_num_threads();
kmp_set_defaults("KMP_AFFINITY=scatter");

■ 输出结果

GFlops =   2867.200, Secs =      1.619, GFlops per sec =   1771.298

● 代码,带宽测试

 #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <omp.h> #define REAL double
#define SIZE (1000*1000*64)
#define MAXFLOP_ITER 1000
#define FLOP_PER_CALC 2 REAL fa[SIZE] __attribute__((align()));
REAL fb[SIZE] __attribute__((align()));
REAL fc[SIZE] __attribute__((align())); double dtime()
{
struct timeval mytime;
gettimeofday(&mytime, (struct timezone*));
return (double)(mytime.tv_sec + mytime.tv_usec*1.0e-6);
} int main(int argc, char *argv[])
{
const REAL a = 1.1;
int i, j; omp_set_num_threads();
kmp_set_defaults("KMP_AFFINITY=scatter"); printf("Initializing\r\n");
#pragma omp parallel for
for (i = ; i < SIZE; i++)
{
fa[i] = (REAL)i + 0.1;
fb[i] = (REAL)i + 0.2;
} #pragma omp parallel
#pragma omp master
printf("Starting BW Test on %d threads\r\n", omp_get_num_threads());
double time_b, time_e;
time_b = dtime();
for (i = ; i < MAXFLOP_ITER; i++)
{
#pragma omp parallel for
for (j = ; j < SIZE; j++)
fa[j] = fb[j];
}
time_e = dtime();
double gbytes = 1.0e-9 * MAXFLOP_ITER * SIZE * FLOP_PER_CALC * sizeof(REAL);
printf("Gbytes = %10.3lf, Secs = %10.3lf, GBytes per sec = %10.3lf\r\n", gbytes, time_e - time_b, gbytes / (time_e - time_b)); return ;
}

■ 输出结果

Starting BW Test on  threads
Gbytes = 1024.000, Secs = 10.293, GBytes per sec = 99.488

● 代码,offload 模式(注意全局变量和编译选项的调整)

 #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <omp.h> #define SIZE (1024*512)
#define MAXFLOP_ITER 100000000
#define LOOP_COUNT 128
#define FLOP_PER_CALC 2 __declspec (target(mic)) float fa[SIZE] __attribute__((align())); // 声明 mic 上的存储类型
__declspec (target(mic)) float fb[SIZE] __attribute__((align())); double dtime()
{
struct timeval mytime;
gettimeofday(&mytime, (struct timezone*));
return (double)(mytime.tv_sec + mytime.tv_usec*1.0e-6);
} int main(int argc, char *argv[])
{
const float a = 1.1;
int i, j, k, numthreads; omp_set_num_threads();
kmp_set_defaults("KMP_AFFINITY=scatter");
#pragma offload target (mic)// 声明需要使用 mic 的 offload 模式
#pragma omp parallel
#pragma omp master
numthreads = omp_get_num_threads(); printf("Initializing\r\n");
#pragma omp parallel for
for (i = ; i<SIZE; i++)
{
fa[i] = (float)i + 0.1;
fb[i] = (float)i + 0.2;
}
printf("Starting Compute on %d threads\r\n", numthreads);
double time_b, time_e;
time_b = dtime();
#pragma offload target (mic)// 声明需要使用 mic 的 offload 模式
#pragma omp parallel for private(j, k)
for (i = ; i<numthreads; i++)
{
int offset = i * LOOP_COUNT;
for (j = ; j < MAXFLOP_ITER; j++)
{
#pragma vector aligned// 强制向量对齐
for (k = ; k < LOOP_COUNT; k++)
fa[k + offset] = a * fa[k + offset] + fb[k + offset];
}
}
time_e = dtime(); double gflops = 1.0e-9 * numthreads * LOOP_COUNT * MAXFLOP_ITER * FLOP_PER_CALC;
printf("GFlops = %10.3lf, Secs = %10.3lf, GFlops per sec = %10.3lf\r\n", gflops, time_e - time_b, gflops / (time_e - time_b)); return ;
}

■ 输出结果

Starting Compute on  threads
GFlops = 5734.400, Secs = 2.976, GFlops per sec = 1927.124

Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 3的更多相关文章

  1. Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 1

    ▶ 第三章,逐步优化了一个二维卷积计算的过程 ● 基准代码 #include <stdio.h> #include <stdlib.h> #include <string ...

  2. Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 4

    ▶ 第五章,几个优化 ● 代码 #include <stdio.h> #include <stdlib.h> #include <math.h> #define S ...

  3. Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 2

    ▶ 第四章,逐步优化了一个三维卷积计算的过程 ● 基准代码 #include <stdio.h> #include <stdlib.h> #include <string ...

  4. Xeon Phi 编程备忘

    ▶ 闲鱼的 Xeon Phi 3120A 配办公室的新 Xeon 服务器,记录一下环境安装过程. ● 原本尝试搭 Ubuntu 服务器,参考[https://software.intel.com/en ...

  5. Python猫荐书系列之五:Python高性能编程

    稍微关心编程语言的使用趋势的人都知道,最近几年,国内最火的两种语言非 Python 与 Go 莫属,于是,隔三差五就会有人问:这两种语言谁更厉害/好找工作/高工资…… 对于编程语言的争论,就是猿界的生 ...

  6. 《高性能javascript》一书要点和延伸(上)

    前些天收到了HTML5中国送来的<高性能javascript>一书,便打算将其做为假期消遣,顺便也写篇文章记录下书中一些要点. 个人觉得本书很值得中低级别的前端朋友阅读,会有很多意想不到的 ...

  7. 高质量C++/C编程指南(林锐)

    推荐-高质量C++/C编程指南(林锐) 版本/状态 作者 参与者 起止日期 备注 V 0.9 草稿文件 林锐   2001-7-1至 2001-7-18 林锐起草 V 1.0 正式文件 林锐   20 ...

  8. 物联网操作系统HelloX应用编程指南

    HelloX操作系统应用编程指南 HelloX应用开发概述 可以通过三种方式,在HelloX操作系统基础上开发应用: 1.        以内部命令方式实现应用,直接编译链接到HelloX的内核she ...

  9. JDK 高性能编程之容器

    高性能编程在对不同场景下对于容器的选择有着非常苛刻的条件,这里记录下前人总结的经验,并对源码进行调试 JDK高性能编程之容器 读书笔记内容部分来源书籍深入理解JVM.互联网等 先放一个类图util,点 ...

随机推荐

  1. Java集合类框架的最佳实践有哪些?

    1.根据应用需要正确选择要使用的集合类型对性能非常重要,比如:假如知道元素的大小是固定的,那么选用Array类型而不是ArrayList类型更为合适. 2.有些集合类型允许指定初始容量.因此,如果我们 ...

  2. 指导手册04:运行MapReduce

    指导手册04:运行MapReduce   Part 1:运行单个MapReduce任务 情景描述: 本次任务要求对HDFS目录中的数据文件/user/root/email_log.txt进行计算处理, ...

  3. Opencv undefined reference to `cv::imread() Ubuntu编译

    Ubuntu下编译一个C++文件,C++源程序中使用了opencv,opencv的安装没有问题,但是在编译的过程中出现如下错误: undefined reference to `cv::imread( ...

  4. man 命令帮助文件输出乱码

    man 命令重定向的时候有写控制字符再直接显示的时候没有问题, 但是重定向到文件中的时候,被解释错误,显示为 ^H 或者乱码 解决方法: man ps | col -b >a.txt 可以消除所 ...

  5. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  6. Future模式介绍及入门使用

    FutureClient代码实现: package com.hjf.future; public class FutureClient { /** * 请求客户端 * @param queryStr ...

  7. [Scala] [Coursera]

    Week 1 Cheat Sheet Link Evaluation Rules Call by value: evaluates the function arguments before call ...

  8. Tex_安装_在Ubuntu系统下

    $\LaTeX$是一个强大的排版软件,在数学公式.表格.甚至是科学绘图方面有着独特优势.本文在Ubuntu系统下,整理Tex安装相关的操作,以为备忘.所引链接都未同作者商量,如有不妥望及时告知. 命令 ...

  9. 周强 201771010141 《面向对象程序设计(java)》 第二周学习总结

    第一部分:理论知识学习部分 第三章 java的基本程序设计结构 本章主要学习数据类型.变量.运算符.类型转换.字符串.输入输出.控制流程.大数值.数组等内容. 1.基本知识 (1)标识符:由字母.下划 ...

  10. Linux搭建SVN环境

    1.安装SVN yun install -y subversion root权限安装 安装成功 验证 svnserve --version 创建SVN版本库 cd /home/kuma/下载 mkdi ...