BZOJ4435 : [Cerc2015]Juice Junctions
最大流=最小割,而因为本题点的度数不超过3,所以最小割不超过3,EK算法的复杂度为$O(n+m)$。
通过分治求出最小割树,设$f[i][j][k]$表示最小割为$i$时,$j$点在第$k$次分治过程中是否与$S$连通,$h[i][j]$为$f[i][j][k]$的hash值,那么如果$h[k][i]=h[k][j]$,则说明$i$和$j$之间的最小割不超过$k$。
时间复杂度$O(n(n+m))$,需要大量常数优化。
#include<cstdio>
#include<cstring>
#define N 3010
struct E{short u,v,nxt,f;}e[9010];
int n,m,i,j,k,a[N],S,T,ed=1,g[N],h[N],q[N],maxflow,ans;unsigned int hash[4][N],pos=1;
inline void add(int u,int v,int f){e[++ed].u=u;e[ed].v=v;e[ed].f=f;e[ed].nxt=g[u];g[u]=ed;}
inline bool bfs(){
int*l=q,*r=q+1,i;
memset(h+1,-1,sizeof(int)*n);
h[q[0]=S]=0;
while(l<r)for(i=g[*l++];i;i=e[i].nxt)if(h[e[i].v]<0&&e[i].f)h[*r++=e[i].v]=i;
return h[T]!=-1;
}
void solve(int l,int r){
if(l>=r)return;
int i,j;
for(i=2;i<=ed;i++)e[i].f=e[i^1].f=1;
S=a[r],T=a[l],maxflow=0;
while(bfs())for(maxflow++,i=T;i!=S;i=e[j].u)e[j=h[i]].f--,e[j^1].f++;
unsigned int*p=hash[maxflow]+1;
for(pos*=233,i=1;i<=n;p++)if(~h[i++])*p+=pos;
int*L=q+l,*R=q+r,*k=a+l;
while(k<=a+r)if(h[*k]<0)*L++=*k++;else *R--=*k++;
memcpy(a+l,q+l,sizeof(int)*(r-l+1));
solve(l,R-q),solve(L-q,r);
}
int main(){
scanf("%d%d",&n,&m);
while(m--)scanf("%d%d",&i,&j),add(i,j,1),add(j,i,1);
for(i=1;i<=n;i++)a[i]=i;
solve(1,n);
for(i=1;i<=n;i++)for(j=i+1;j<=n;j++)for(k=0;k<4;k++)if(hash[k][i]!=hash[k][j]){ans+=k;break;}
return printf("%d",ans),0;
}
BZOJ4435 : [Cerc2015]Juice Junctions的更多相关文章
- BZOJ4435——[Cerc2015]Juice Junctions
0.题目大意:求两点之间的最小割之和 1.分析:很明显,最小割树,我们发现这个题并不能用n^3的方法来求答案.. 所以我们记录下所有的边,然后把边从大到小排序,然后跑一边类似kruskal的东西,顺便 ...
- bzoj4435: [Cerc2015]Juice Junctions(最小割树+hash)
传送门 首先最大流等于最小割,那么可以转化为最小割树来做(不知道什么是最小割树的可以看看这题->这里) 具体的做法似乎是$hash[i][j]$表示最小割为$i$时点$j$是否与$S$连通 然后 ...
- 【BZOJ4435】[Cerc2015]Juice Junctions Tarjan+hash
[BZOJ4435][Cerc2015]Juice Junctions Description 你被雇佣升级一个旧果汁加工厂的橙汁运输系统.系统有管道和节点构成.每条管道都是双向的,且每条管道的流量都 ...
- 【BZOJ-4435】Juice Junctions 最小割树(分治+最小割)+Hash
4435: [Cerc2015]Juice Junctions Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 20 Solved: 11[Submi ...
- BZOJ 4435 [Cerc2015]Juice Junctions 分治最小割+hash
分治最小割的题目,要求n2. 之前用的n3的方法自然不能用了. 于是用hash,设hash[i][j]表示在最小割为i的时候,j是否与S联通. 看懂这个需要理解一下最小割树的构造. 这种题建议用EK写 ...
- [CERC2015]Juice Junctions(边双连通+字符串hash)
做法 考虑边数限制的特殊条件,显然答案仅有\(\{0,1,2,3\}\) 0:不联通 1:连通 2:边双连通 3:任意删掉一条边都为边双连通 考虑每次删边后记录各点的边双染色情况来特判\(3\):是否 ...
- Juice Junctions
Juice Junctions 题目描述 你被雇佣升级一个旧果汁加工厂的橙汁运输系统.系统有管道和节点构成.每条管道都是双向的,且每条管道的流量都是11升每秒.管道可能连接节点,每个节点最多可以连接3 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- Gym - 101480 CERC 15:部分题目题解(队内第N次训练)
-------------------题目难度较难,但挺有营养的.慢慢补. A .ASCII Addition pro:用一定的形式表示1到9,让你计算加法. sol:模拟. solved by fz ...
随机推荐
- JS判断IE版本并在页面显示内容
<script type="text/javascript"> var isIE = function (ver) { var b = document.createE ...
- Loadrunner中Throughput(吞吐量)的分析与计算
Throughput翻译为吞吐量,按照常规理解网络吞吐量表示在单位时间内通过网卡数据量之和,其中即包括本机网卡发送出去的数据量也包括本机网卡接收到的数据量,但这个理解在Loadrunner记录的Thr ...
- Python无类再理解--metaclass,type
上次理解过一次,时间久了,就忘了.. 再学习一次.. http://blog.jobbole.com/21351/ ======================= 但是,Python中的类还远不止如此 ...
- [LeetCode] Add Two Numbers
You are given two linked lists representing two non-negative numbers. The digits are stored in rever ...
- thinkphp调用phpqrcode.php生成二维码
thinkphp3. 把phpqrcode文件夹放在ThinkPHP\Library\Vendor\下面 phpqrcode下载: http://files.cnblogs.com/files/qho ...
- bzoj 1415 期望+记忆化搜索 ****
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdkAAAIfCAIAAACzfDFhAAAgAElEQVR4nOy9bVwTW57vm5fnhed+Pn
- C和C++混合编程(__cplusplus 与 external "c" 的使用)
转自:http://blog.csdn.net/ljfth/article/details/3965871 第一种理解比如说你用C++开发了一个DLL库,为了能够让C语言也能够调用你的DLL输出(Ex ...
- 自己制作QQ空间音乐的具体方法
1.打开QQ邮箱找到左栏下方的“文件中转站”--点击收藏文件--上传到收藏 将MP3或WMA音乐文件上传 上传完成点下载 下图: 2.点“保存”将最上面一排的地址全部复制 下图 3.为了更 ...
- VS2012 OpenCV2.4.9 Debug可以允许,Release不可以
一个简单的程序 #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgu ...
- The Basics of 3D Printing in 2015 - from someone with 16 WHOLE HOURS' experience
全文转载自 Scott Hanselman的博文. I bought a 3D printer on Friday, specifically a Printrbot Simple Metal fro ...