The Moving Points

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 878    Accepted Submission(s): 353

Problem Description
There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
 
Input
The rst line has a number T (T <= 10) , indicating the number of test cases.
For each test case, first line has a single number N (N <= 300), which is the number of points.
For next N lines, each come with four integers Xi, Yi, VXi and VYi (-106 <= Xi, Yi <= 106, -102 <= VXi , VYi <= 102), (Xi, Yi) is the position of the ith point, and (VXi , VYi) is its speed with direction. That is to say, after 1 second, this point will move to (Xi + VXi , Yi + VYi).
 
Output
For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.
 
Sample Input
2
2
0 0 1 0
2 0 -1 0
2
0 0 1 0
2 1 -1 0
 
Sample Output
Case #1: 1.00 0.00
Case #2: 1.00 1.00
 
Source
 
Recommend
zhuyuanchen520
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath> using namespace std; const double eps=1e-;
const double INF=0x3f3f3f3f; struct point
{
double x,y;
double vx,vy;
point() {}
point(double a,double b,double c,double d):x(a),y(b),vx(c),vy(d){}
}P[]; double getP2Pdist(point a,point b,double t)
{
double x1=a.x+t*a.vx,y1=a.y+t*a.vy;
double x2=b.x+t*b.vx,y2=b.y+t*b.vy;
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
} double LMdist(int n,double t)
{
double ans=-INF;
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
ans=max(ans,getP2Pdist(P[i],P[j],t));
}
}
return ans;
} int main()
{
int t,n,cas=;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
double a,b,c,d;
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
P[i]=point(a,b,c,d);
}
double low=,high=,midlow,midhigh;
int cnt=;
while(cnt<=)
{
cnt++;
midlow=(low*+high)/.,midhigh=(low+high*)/.;
double distlow=LMdist(n,midlow);
double disthigh=LMdist(n,midhigh);
if(distlow>disthigh) low=midlow;
else high=midhigh;
}
double anstime=low;
double ansdist=LMdist(n,low);
printf("Case #%d: %.2lf %.2lf\n",cas++,anstime,ansdist);
}
return ;
}
* This source code was highlighted by YcdoiT. ( style: Codeblocks )

HDOJ 4717 The Moving Points的更多相关文章

  1. HDU 4717 The Moving Points (三分)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. HDU 4717 The Moving Points(三分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 题意:给出n个点的坐标和运动速度(包括方向).求一个时刻t使得该时刻时任意两点距离最大值最小. ...

  3. hdu 4717 The Moving Points(第一个三分题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 [题意]: 给N个点,给出N个点的方向和移动速度,求每个时刻N个点中任意两点的最大值中的最小值,以及取最小 ...

  4. hdu 4717 The Moving Points(三分+计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 说明下为啥满足三分: 设y=f(x) (x>0)表示任意两个点的距离随时间x的增长,距离y ...

  5. HDU 4717 The Moving Points(三分法)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description There are N points in total. Every point moves in certain direction and certain speed. W ...

  6. hdu 4717 The Moving Points(三分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 大致题意:给出每一个点的坐标以及每一个点移动的速度和方向. 问在那一时刻点集中最远的距离在全部时刻的最远距 ...

  7. HDU 4717 The Moving Points (三分法)

    题意:给n个点的坐标的移动方向及速度,问在之后的时间的所有点的最大距离的最小值是多少. 思路:三分.两点距离是下凹函数,它们的max也是下凹函数.可以三分. #include<iostream& ...

  8. hdu 4717: The Moving Points 【三分】

    题目链接 第一次写三分 三分的基本模板 int SanFen(int l,int r) //找凸点 { ) { //mid为中点,midmid为四等分点 ; ; if( f(mid) > f(m ...

  9. HDU 4717The Moving Points warmup2 1002题(三分)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. delete表1条件是另一个表中的数据,多表连接删除(转)

    DELETE删除多表数据,怎样才能同时删除多个关联表的数据呢?这里做了深入的解释: 1. delete from t1 where 条件 2.delete t1 from t1 where 条件 3. ...

  2. linux下memcache的运用,和php结合小案例。

    由于是采用脚本安装的memache,所以软件的依赖关系我就不操心了,脚本已经帮我装好了和php的关联关系,实在是很省心.后续如果有需要,我会针对windows和linux各写一个安装和配置的说明,一来 ...

  3. gnuplot conditional plotting: plot col A:col B if col C == x

    http://stackoverflow.com/questions/6564561/gnuplot-conditional-plotting-plot-col-acol-b-if-col-c-x H ...

  4. Linux bash 中,如何将正常信息和错误信息输出到文件

    问题描述: $ command 2>> error $ command 1>> output 是否有方法,在bash同一行,实现输出stderr到error文件,输出stdou ...

  5. PHP 基本语法,字符串处理,正则

    <?php //注释语法 /*多行注释*/  输出语法 Echo "hello","worle";         //可以输出多个字符串 Print   ...

  6. css3实现小黄人

    效果就像这样: 不废话,直接上代码! hrml代码: <!DOCTYPE html> <html> <head lang="zh"> <m ...

  7. JNI笔记

    由于要做一个能够加红字体的dialog,而cocos2d中的CCMessageBox是系统内带的,我无法修改其字体颜色.事实上是可以修改的,通过观察发现CCMessageBox被调用后,在安卓平台中会 ...

  8. spring-boot-cli

  9. linux curl 命令详解,以及实例

    linux curl是一个利用URL规则在命令行下工作的文件传输工具.它支持文件的上传和下载,所以是综合传输工具,但按传统,习惯称url为下载工具. 一,curl命令参数,有好多我没有用过,也不知道翻 ...

  10. Http请求之--C#的HttpWebRequest实现POST方式请求

    1.添加头信息和请求方法.有两种方式添加             req = (HttpWebRequest)WebRequest.Create("http://zhidao.baidu.c ...