HBase简介

HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。

上图描述了Hadoop EcoSystem中的各层系统,其中HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。

此外,Pig和Hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。

HBase访问接口

1.       Native Java API,最常规和高效的访问方式,适合Hadoop MapReduce Job并行批处理HBase表数据

2.       HBase Shell,HBase的命令行工具,最简单的接口,适合HBase管理使用

3.       Thrift Gateway,利用Thrift序列化技术,支持C++,PHP,Python等多种语言,适合其他异构系统在线访问HBase表数据

4.       REST Gateway,支持REST 风格的Http API访问HBase, 解除了语言限制

5.       Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapReduce Job来处理HBase表数据,适合做数据统计

6.       Hive,当前Hive的Release版本尚没有加入对HBase的支持,但在下一个版本Hive 0.7.0中将会支持HBase,可以使用类似SQL语言来访问HBase

HBase数据模型

Table & Column Family

Row Key Timestamp Column Family
URI Parser
r1 t3 url=http://www.taobao.com title=天天特价
t2 host=taobao.com  
t1    
r2 t5 url=http://www.alibaba.com content=每天…
t4 host=alibaba.com  

Ø  Row Key: 行键,Table的主键,Table中的记录按照Row Key排序

Ø  Timestamp: 时间戳,每次数据操作对应的时间戳,可以看作是数据的version number

Ø  Column Family:列簇,Table在水平方向有一个或者多个Column Family组成,一个Column Family中可以由任意多个Column组成,即Column Family支持动态扩展,无需预先定义Column的数量以及类型,所有Column均以二进制格式存储,用户需要自行进行类型转换。

Table & Region

当Table随着记录数不断增加而变大后,会逐渐分裂成多份splits,成为regions,一个region由[startkey,endkey)表示,不同的region会被Master分配给相应的RegionServer进行管理:

-ROOT- && .META. Table

HBase中有两张特殊的Table,-ROOT-和.META.

Ø  .META.:记录了用户表的Region信息,.META.可以有多个regoin

Ø  -ROOT-:记录了.META.表的Region信息,-ROOT-只有一个region

Ø  Zookeeper中记录了-ROOT-表的location

Client访问用户数据之前需要首先访问zookeeper,然后访问-ROOT-表,接着访问.META.表,最后才能找到用户数据的位置去访问,中间需要多次网络操作,不过client端会做cache缓存。

MapReduce on HBase

在HBase系统上运行批处理运算,最方便和实用的模型依然是MapReduce,如下图:

HBase Table和Region的关系,比较类似HDFS File和Block的关系,HBase提供了配套的TableInputFormat和TableOutputFormat API,可以方便的将HBase Table作为Hadoop MapReduce的Source和Sink,对于MapReduce Job应用开发人员来说,基本不需要关注HBase系统自身的细节。

HBase系统架构

Client

HBase Client使用HBase的RPC机制与HMaster和HRegionServer进行通信,对于管理类操作,Client与HMaster进行RPC;对于数据读写类操作,Client与HRegionServer进行RPC

Zookeeper

Zookeeper Quorum中除了存储了-ROOT-表的地址和HMaster的地址,HRegionServer也会把自己以Ephemeral方式注册到Zookeeper中,使得HMaster可以随时感知到各个HRegionServer的健康状态。此外,Zookeeper也避免了HMaster的单点问题,见下文描述

HMaster

HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master运行,HMaster在功能上主要负责Table和Region的管理工作:

1.       管理用户对Table的增、删、改、查操作

2.       管理HRegionServer的负载均衡,调整Region分布

3.       在Region Split后,负责新Region的分配

4.       在HRegionServer停机后,负责失效HRegionServer 上的Regions迁移

HRegionServer

HRegionServer主要负责响应用户I/O请求,向HDFS文件系统中读写数据,是HBase中最核心的模块。

HRegionServer内部管理了一系列HRegion对象,每个HRegion对应了Table中的一个Region,HRegion中由多个HStore组成。每个HStore对应了Table中的一个Column Family的存储,可以看出每个Column Family其实就是一个集中的存储单元,因此最好将具备共同IO特性的column放在一个Column Family中,这样最高效。

HStore存储是HBase存储的核心了,其中由两部分组成,一部分是MemStore,一部分是StoreFiles。MemStore是Sorted Memory Buffer,用户写入的数据首先会放入MemStore,当MemStore满了以后会Flush成一个StoreFile(底层实现是HFile),当StoreFile文件数量增长到一定阈值,会触发Compact合并操作,将多个StoreFiles合并成一个StoreFile,合并过程中会进行版本合并和数据删除,因此可以看出HBase其实只有增加数据,所有的更新和删除操作都是在后续的compact过程中进行的,这使得用户的写操作只要进入内存中就可以立即返回,保证了HBase I/O的高性能。当StoreFiles Compact后,会逐步形成越来越大的StoreFile,当单个StoreFile大小超过一定阈值后,会触发Split操作,同时把当前Region Split成2个Region,父Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上。下图描述了Compaction和Split的过程:

在理解了上述HStore的基本原理后,还必须了解一下HLog的功能,因为上述的HStore在系统正常工作的前提下是没有问题的,但是在分布式系统环境中,无法避免系统出错或者宕机,因此一旦HRegionServer意外退出,MemStore中的内存数据将会丢失,这就需要引入HLog了。每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

HBase存储格式

HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,主要包括上述提出的两种文件类型:

1.       HFile, HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile

2.       HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

HFile

下图是HFile的存储格式:

首先HFile文件是不定长的,长度固定的只有其中的两块:Trailer和FileInfo。正如图中所示的,Trailer中有指针指向其他数据块的起始点。File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等。Data Index和Meta Index块记录了每个Data块和Meta块的起始点。

Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制。每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询。每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏。后面会详细介绍每个KeyValue对的内部构造。

HFile里面的每个KeyValue对就是一个简单的byte数组。但是这个byte数组里面包含了很多项,并且有固定的结构。我们来看看里面的具体结构:

开始是两个固定长度的数值,分别表示Key的长度和Value的长度。紧接着是Key,开始是固定长度的数值,表示RowKey的长度,紧接着是RowKey,然后是固定长度的数值,表示Family的长度,然后是Family,接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)。Value部分没有这么复杂的结构,就是纯粹的二进制数据了。

HLogFile

上图中示意了HLog文件的结构,其实HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。

HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,可参见上文描述。

结束

本文对HBase技术在功能和设计上进行了大致的介绍,由于篇幅有限,本文没有过多深入地描述HBase的一些细节技术。目前一淘的存储系统就是基于HBase技术搭建的,后续将介绍“一淘分布式存储系统”,通过实际案例来更多的介绍HBase应用。

转载自:http://www.searchtb.com/2011/01/understanding-hbase.html

HBase简介的更多相关文章

  1. HBase简介及原理

    HBase简介 1.HBase是一个万亿行,百万列大表(Big Table),数据存放在hdfs集群中: 写操作使用MapReduce处理,将(增删改)处理结果放入HBase中,读就直接读HBase: ...

  2. hbase学习(一)hbase简介

    1.hadoop生态系统 2.hbase简介 非关系型数据库知识面扩展 cassandra.hbase.mongodb.redis couchdb,文件存储数据库 Neo4j非关系型图数据库 3.hb ...

  3. HBase 学习之路(一)—— HBase简介

    一.Hadoop的局限 HBase是一个构建在Hadoop文件系统之上的面向列的数据库管理系统. 要想明白为什么产生HBase,就需要先了解一下Hadoop存在的限制?Hadoop可以通过HDFS来存 ...

  4. 【转帖】HBase简介(梳理知识)

    HBase简介(梳理知识)   https://www.cnblogs.com/muhongxin/p/9471445.html 一. 简介 hbase是bigtable的开源山寨版本.是建立的hdf ...

  5. HBase 系列(一)—— HBase 简介

    一.Hadoop的局限 HBase 是一个构建在 Hadoop 文件系统之上的面向列的数据库管理系统. 要想明白为什么产生 HBase,就需要先了解一下 Hadoop 存在的限制?Hadoop 可以通 ...

  6. 1.Hbase简介

    1. Hbase简介 1.1. 什么是hbase(面向列) HBASE是一个高可靠性.高性能.面向列.可伸缩的分布式存储系统,利用HBASE技术可在廉价PC Server上搭建起大规模 结构化存储集群 ...

  7. HBase简介(很好的梳理资料)

    http://www.tuicool.com/articles/iieIz2 一.   简介 history  started by chad walters and jim 2006.11 G re ...

  8. 【Hbase学习之一】Hbase 简介

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-2.1.3 ...

  9. HBase简介(梳理知识)

    一. 简介 hbase是bigtable的开源山寨版本.是建立的hdfs之上,提供高可靠性.高性能.列存储.可伸缩.实时读写的数据库系统.它介于nosql和RDBMS之间,仅能通过主键(row key ...

随机推荐

  1. Android网络请求框架

    本篇主要介绍一下Android中经常用到的网络请求框架: 客户端网络请求,就是客户端发起网络请求,经过网络框架的特殊处理,让后将请求发送的服务器,服务器根据 请求的参数,返回客户端需要的数据,经过网络 ...

  2. Maven基础配置—上传jar包到私服

    一.配置 在需要上传的工程中的pom.xml文件中加入下面的配置 <distributionManagement> <repository> <id>release ...

  3. Symantec Backup Exec 报"Access denied to directory xxx" Error Code E0008488

    使用Symantec Backup Exec将几台Linux服务器上的RMAN备份收带时,偶尔会遇到作业备份失败的情况,检查Job History,就会发现有“Access denied to dir ...

  4. sed实例精解--例说sed完整版

    原文地址:sed实例精解--例说sed完整版 作者:xiaozhenggang 最近在学习shell,怕学了后面忘了前面的就把学习和实验的过程记录下来了.这里是关于sed的,前面有三四篇分开的,现在都 ...

  5. 初学Mahout测试kmeans算法

    预备工作: 启动hadoop集群 准备数据 Synthetic_control.data数据集下载地址http://archive.ics.uci.edu/ml/databases/synthetic ...

  6. Apache虚拟主机配置

    在一个Apache服务器上可以配置多个虚拟主机,实现一个服务器提供多站点服务,其实就是访问同一个服务器上的不同目录.Apache虚拟主机配置有3中方法:基于IP配置.基于域名配置和基于端口配置,这里介 ...

  7. jQuery简单入门(二)

    2.Dom操作 A.DOM分类 个人认为在jQuery中这些分类被弱化了,有兴趣的读者可以自行补充这方面的知识: aa.DOM Core bb.HTML -DOM cc. CSS-DOM B.jQue ...

  8. Webview加载本地js、图片的方法

    在项目开发中经常会将比较大的js.图片.css等放到app中,而html放服务器,这样在使用时流量较少,加载也比都放服务器上快,其实方法也比较多,网上搜了很久都没结果. 一种是获取服务器返回的html ...

  9. lsattr, chattr

    lsattr $lsattr #查看文件的隐藏属性 $lsattr -------------e- ./bookmarks-2016-10-11.json -------------e- ./rxvt ...

  10. iNeedle日志下载功能问题

    问题: iNeedle系统本身包含日志下载功能,主要是将web服务器中的用户访问日志按照一定条件进行筛选并下载,提供管理者分析.但是这次的测试中发现iNeedle日志下载一直会卡住,web界面显示正在 ...