七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)
http://blog.csdn.net/xw20084898/article/details/17564957
一、工具:VC+OpenCV
二、语言:C++
三、原理
otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别 来划分。 所以 可以在二值化的时候 采用otsu算法来自动选取阈值进行二值化。otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响。因此,使类间方差最大的分割意味着错分概率最小。
设t为设定的阈值。
wo: 分开后 前景像素点数占图像的比例
uo: 分开后 前景像素点的平均灰度
w1:分开后 被景像素点数占图像的比例
u1: 分开后 被景像素点的平均灰度
u=w0*u0 + w1*u1 :图像总平均灰度
从L个灰度级遍历t,使得t为某个值的时候,前景和背景的方差最大, 则 这个 t 值便是我们要求得的阈值。
其中,方差的计算公式如下:
g=wo * (uo - u) * (uo - u) + w1 * (u1 - u) * (u1 - u)
[ 此公式计算量较大,可以采用: g = wo * w1 * (uo - u1) * (uo - u1) ]
由于otsu算法是对图像的灰度级进行聚类,so 在执行otsu算法之前,需要计算该图像的灰度直方图。
迭代法原理:迭代选择法是首先猜测一个初始阈值,然后再通过对图像的多趟计算对阈值进行改进的过程。重复地对图像进行阈值操作,将图像分割为对象类和背景类,然后来利用每一个类中的灰阶级别对阈值进行改进。
图像阈值分割---迭代算法
1 .处理流程:
1.为全局阈值选择一个初始估计值T(图像的平均灰度)。
2.用T分割图像。产生两组像素:G1有灰度值大于T的像素组成,G2有小于等于T像素组成。
3.计算G1和G2像素的平均灰度值m1和m2;
4.计算一个新的阈值:T = (m1 + m2) / 2;
5.重复步骤2和4,直到连续迭代中的T值间的差小于一个预定义参数为止。
适合图像直方图有明显波谷
四、程序
主程序(核心部分)
- 阈值分割
- 1 /*===============================图像分割=====================================*/
- 2 /*---------------------------------------------------------------------------*/
- 3 /*手动设置阀值*/
- 4 IplImage* binaryImg = cvCreateImage(cvSize(w, h),IPL_DEPTH_8U, 1);
- 5 cvThreshold(smoothImgGauss,binaryImg,71,255,CV_THRESH_BINARY);
- 6 cvNamedWindow("cvThreshold", CV_WINDOW_AUTOSIZE );
- 7 cvShowImage( "cvThreshold", binaryImg );
- 8 //cvReleaseImage(&binaryImg);
- 9 /*---------------------------------------------------------------------------*/
- 10 /*自适应阀值 //计算像域邻域的平均灰度,来决定二值化的值*/
- 11 IplImage* adThresImg = cvCreateImage(cvSize(w, h),IPL_DEPTH_8U, 1);
- 12 double max_value=255;
- 13 int adpative_method=CV_ADAPTIVE_THRESH_GAUSSIAN_C;//CV_ADAPTIVE_THRESH_MEAN_C
- 14 int threshold_type=CV_THRESH_BINARY;
- 15 int block_size=3;//阈值的象素邻域大小
- 16 int offset=5;//窗口尺寸
- 17 cvAdaptiveThreshold(smoothImgGauss,adThresImg,max_value,adpative_method,threshold_type,block_size,offset);
- 18 cvNamedWindow("cvAdaptiveThreshold", CV_WINDOW_AUTOSIZE );
- 19 cvShowImage( "cvAdaptiveThreshold", adThresImg );
- 20 cvReleaseImage(&adThresImg);
- 21 /*---------------------------------------------------------------------------*/
- 22 /*最大熵阀值分割法*/
- 23 IplImage* imgMaxEntropy = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
- 24 MaxEntropy(smoothImgGauss,imgMaxEntropy);
- 25 cvNamedWindow("MaxEntroyThreshold", CV_WINDOW_AUTOSIZE );
- 26 cvShowImage( "MaxEntroyThreshold", imgMaxEntropy );//显示图像
- 27 cvReleaseImage(&imgMaxEntropy );
- 28 /*---------------------------------------------------------------------------*/
- 29 /*基本全局阀值法*/
- 30 IplImage* imgBasicGlobalThreshold = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
- 31 cvCopyImage(srcImgGrey,imgBasicGlobalThreshold);
- 32 int pg[256],i,thre;
- 33 for (i=0;i<256;i++) pg[i]=0;
- 34 for (i=0;i<imgBasicGlobalThreshold->imageSize;i++) // 直方图统计
- 35 pg[(BYTE)imgBasicGlobalThreshold->imageData[i]]++;
- 36 thre = BasicGlobalThreshold(pg,0,256); // 确定阈值
- 37 cout<<"The Threshold of this Image in BasicGlobalThreshold is:"<<thre<<endl;//输出显示阀值
- 38 cvThreshold(imgBasicGlobalThreshold,imgBasicGlobalThreshold,thre,255,CV_THRESH_BINARY); // 二值化
- 39 cvNamedWindow("BasicGlobalThreshold", CV_WINDOW_AUTOSIZE );
- 40 cvShowImage( "BasicGlobalThreshold", imgBasicGlobalThreshold);//显示图像
- 41 cvReleaseImage(&imgBasicGlobalThreshold);
- 42 /*---------------------------------------------------------------------------*/
- 43 /*OTSU*/
- 44 IplImage* imgOtsu = cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,1);
- 45 cvCopyImage(srcImgGrey,imgOtsu);
- 46 int thre2;
- 47 thre2 = otsu2(imgOtsu);
- 48 cout<<"The Threshold of this Image in Otsu is:"<<thre2<<endl;//输出显示阀值
- 49 cvThreshold(imgOtsu,imgOtsu,thre2,255,CV_THRESH_BINARY); // 二值化
- 50 cvNamedWindow("imgOtsu", CV_WINDOW_AUTOSIZE );
- 51 cvShowImage( "imgOtsu", imgOtsu);//显示图像
- 52 cvReleaseImage(&imgOtsu);
- 53 /*---------------------------------------------------------------------------*/
- 54 /*上下阀值法:利用正态分布求可信区间*/
- 55 IplImage* imgTopDown = cvCreateImage( cvGetSize(imgGrey), IPL_DEPTH_8U, 1 );
- 56 cvCopyImage(srcImgGrey,imgTopDown);
- 57 CvScalar mean ,std_dev;//平均值、 标准差
- 58 double u_threshold,d_threshold;
- 59 cvAvgSdv(imgTopDown,&mean,&std_dev,NULL);
- 60 u_threshold = mean.val[0] +2.5* std_dev.val[0];//上阀值
- 61 d_threshold = mean.val[0] -2.5* std_dev.val[0];//下阀值
- 62 //u_threshold = mean + 2.5 * std_dev; //错误
- 63 //d_threshold = mean - 2.5 * std_dev;
- 64 cout<<"The TopThreshold of this Image in TopDown is:"<<d_threshold<<endl;//输出显示阀值
- 65 cout<<"The DownThreshold of this Image in TopDown is:"<<u_threshold<<endl;
- 66 cvThreshold(imgTopDown,imgTopDown,d_threshold,u_threshold,CV_THRESH_BINARY_INV);//上下阀值
- 67 cvNamedWindow("imgTopDown", CV_WINDOW_AUTOSIZE );
- 68 cvShowImage( "imgTopDown", imgTopDown);//显示图像
- 69 cvReleaseImage(&imgTopDown);
- 70 /*---------------------------------------------------------------------------*/
- 71 /*迭代法*/
- 72 IplImage* imgIteration = cvCreateImage( cvGetSize(imgGrey), IPL_DEPTH_8U, 1 );
- 73 cvCopyImage(srcImgGrey,imgIteration);
- 74 int thre3,nDiffRec;
- 75 thre3 =DetectThreshold(imgIteration, 100, nDiffRec);
- 76 cout<<"The Threshold of this Image in imgIteration is:"<<thre3<<endl;//输出显示阀值
- 77 cvThreshold(imgIteration,imgIteration,thre3,255,CV_THRESH_BINARY_INV);//上下阀值
- 78 cvNamedWindow("imgIteration", CV_WINDOW_AUTOSIZE );
- 79 cvShowImage( "imgIteration", imgIteration);
- 80 cvReleaseImage(&imgIteration);
- 迭代
- 1 /*======================================================================*/
- 2 /* 迭代法*/
- 3 /*======================================================================*/
- 4 // nMaxIter:最大迭代次数;nDiffRec:使用给定阀值确定的亮区与暗区平均灰度差异值
- 5 int DetectThreshold(IplImage*img, int nMaxIter, int& iDiffRec) //阀值分割:迭代法
- 6 {
- 7 //图像信息
- 8 int height = img->height;
- 9 int width = img->width;
- 10 int step = img->widthStep/sizeof(uchar);
- 11 uchar *data = (uchar*)img->imageData;
- 12
- 13 iDiffRec =0;
- 14 int F[256]={ 0 }; //直方图数组
- 15 int iTotalGray=0;//灰度值和
- 16 int iTotalPixel =0;//像素数和
- 17 byte bt;//某点的像素值
- 18
- 19 uchar iThrehold,iNewThrehold;//阀值、新阀值
- 20 uchar iMaxGrayValue=0,iMinGrayValue=255;//原图像中的最大灰度值和最小灰度值
- 21 uchar iMeanGrayValue1,iMeanGrayValue2;
- 22
- 23 //获取(i,j)的值,存于直方图数组F
- 24 for(int i=0;i<width;i++)
- 25 {
- 26 for(int j=0;j<height;j++)
- 27 {
- 28 bt = data[i*step+j];
- 29 if(bt<iMinGrayValue)
- 30 iMinGrayValue = bt;
- 31 if(bt>iMaxGrayValue)
- 32 iMaxGrayValue = bt;
- 33 F[bt]++;
- 34 }
- 35 }
- 36
- 37 iThrehold =0;//
- 38 iNewThrehold = (iMinGrayValue+iMaxGrayValue)/2;//初始阀值
- 39 iDiffRec = iMaxGrayValue - iMinGrayValue;
- 40
- 41 for(int a=0;(abs(iThrehold-iNewThrehold)>0.5)&&a<nMaxIter;a++)//迭代中止条件
- 42 {
- 43 iThrehold = iNewThrehold;
- 44 //小于当前阀值部分的平均灰度值
- 45 for(int i=iMinGrayValue;i<iThrehold;i++)
- 46 {
- 47 iTotalGray += F[i]*i;//F[]存储图像信息
- 48 iTotalPixel += F[i];
- 49 }
- 50 iMeanGrayValue1 = (uchar)(iTotalGray/iTotalPixel);
- 51 //大于当前阀值部分的平均灰度值
- 52 iTotalPixel =0;
- 53 iTotalGray =0;
- 54 for(int j=iThrehold+1;j<iMaxGrayValue;j++)
- 55 {
- 56 iTotalGray += F[j]*j;//F[]存储图像信息
- 57 iTotalPixel += F[j];
- 58 }
- 59 iMeanGrayValue2 = (uchar)(iTotalGray/iTotalPixel);
- 60
- 61 iNewThrehold = (iMeanGrayValue2+iMeanGrayValue1)/2; //新阀值
- 62 iDiffRec = abs(iMeanGrayValue2 - iMeanGrayValue1);
- 63 }
- 64
- 65 //cout<<"The Threshold of this Image in imgIteration is:"<<iThrehold<<endl;
- 66 return iThrehold;
- 67 }
- 68
- Otsu代码一
- 1 /*======================================================================*/
- 2 /* OTSU global thresholding routine */
- 3 /* takes a 2D unsigned char array pointer, number of rows, and */
- 4 /* number of cols in the array. returns the value of the threshold */
- 5 /*parameter:
- 6 *image --- buffer for image
- 7 rows, cols --- size of image
- 8 x0, y0, dx, dy --- region of vector used for computing threshold
- 9 vvv --- debug option, is 0, no debug information outputed
- 10 */
- 11 /*
- 12 OTSU 算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。
- 13 下面的代码最早由 Ryan Dibble提供,此后经过多人Joerg.Schulenburg, R.Z.Liu 等修改,补正。
- 14 算法对输入的灰度图像的直方图进行分析,将直方图分成两个部分,使得两部分之间的距离最大。
- 15 划分点就是求得的阈值。
- 16 */
- 17 /*======================================================================*/
- 18 int otsu (unsigned char*image, int rows, int cols, int x0, int y0, int dx, int dy, int vvv)
- 19 {
- 20
- 21 unsigned char*np; // 图像指针
- 22 int thresholdValue=1; // 阈值
- 23 int ihist[256]; // 图像直方图,256个点
- 24
- 25 int i, j, k; // various counters
- 26 int n, n1, n2, gmin, gmax;
- 27 double m1, m2, sum, csum, fmax, sb;
- 28
- 29 // 对直方图置零
- 30 memset(ihist, 0, sizeof(ihist));
- 31
- 32 gmin=255; gmax=0;
- 33 // 生成直方图
- 34 for (i = y0 +1; i < y0 + dy -1; i++)
- 35 {
- 36 np = (unsigned char*)image[i*cols+x0+1];
- 37 for (j = x0 +1; j < x0 + dx -1; j++)
- 38 {
- 39 ihist[*np]++;
- 40 if(*np > gmax) gmax=*np;
- 41 if(*np < gmin) gmin=*np;
- 42 np++; /* next pixel */
- 43 }
- 44 }
- 45
- 46 // set up everything
- 47 sum = csum =0.0;
- 48 n =0;
- 49
- 50 for (k =0; k <=255; k++)
- 51 {
- 52 sum += (double) k * (double) ihist[k]; /* x*f(x) 质量矩*/
- 53 n += ihist[k]; /* f(x) 质量 */
- 54 }
- 55
- 56 if (!n)
- 57 {
- 58 // if n has no value, there is problems...
- 59 fprintf (stderr, "NOT NORMAL thresholdValue = 160\n");
- 60 return (160);
- 61 }
- 62
- 63 // do the otsu global thresholding method
- 64 fmax =-1.0;
- 65 n1 =0;
- 66 for (k =0; k <255; k++)
- 67 {
- 68 n1 += ihist[k];
- 69 if (!n1)
- 70 {
- 71 continue;
- 72 }
- 73 n2 = n - n1;
- 74 if (n2 ==0)
- 75 {
- 76 break;
- 77 }
- 78 csum += (double) k *ihist[k];
- 79 m1 = csum / n1;
- 80 m2 = (sum - csum) / n2;
- 81 sb = (double) n1 *(double) n2 *(m1 - m2) * (m1 - m2);
- 82 /* bbg: note: can be optimized. */
- 83 if (sb > fmax)
- 84 {
- 85 fmax = sb;
- 86 thresholdValue = k;
- 87 }
- 88 }
- 89
- 90 // at this point we have our thresholding value
- 91
- 92 // debug code to display thresholding values
- 93 if ( vvv &1 )
- 94 fprintf(stderr,"# OTSU: thresholdValue = %d gmin=%d gmax=%d\n",
- 95 thresholdValue, gmin, gmax);
- 96
- 97 return(thresholdValue);
- 98 }
- Otsu代码二
- 1 /*======================================================================*/
- 2 /* OTSU global thresholding routine */
- 3 /*======================================================================*/
- 4 int otsu2 (IplImage *image)
- 5 {
- 6 int w = image->width;
- 7 int h = image->height;
- 8
- 9 unsigned char*np; // 图像指针
- 10 unsigned char pixel;
- 11 int thresholdValue=1; // 阈值
- 12 int ihist[256]; // 图像直方图,256个点
- 13
- 14 int i, j, k; // various counters
- 15 int n, n1, n2, gmin, gmax;
- 16 double m1, m2, sum, csum, fmax, sb;
- 17
- 18 // 对直方图置零...
- 19 memset(ihist, 0, sizeof(ihist));
- 20
- 21 gmin=255; gmax=0;
- 22 // 生成直方图
- 23 for (i =0; i < h; i++)
- 24 {
- 25 np = (unsigned char*)(image->imageData + image->widthStep*i);
- 26 for (j =0; j < w; j++)
- 27 {
- 28 pixel = np[j];
- 29 ihist[ pixel]++;
- 30 if(pixel > gmax) gmax= pixel;
- 31 if(pixel < gmin) gmin= pixel;
- 32 }
- 33 }
- 34
- 35 // set up everything
- 36 sum = csum =0.0;
- 37 n =0;
- 38
- 39 for (k =0; k <=255; k++)
- 40 {
- 41 sum += k * ihist[k]; /* x*f(x) 质量矩*/
- 42 n += ihist[k]; /* f(x) 质量 */
- 43 }
- 44
- 45 if (!n)
- 46 {
- 47 // if n has no value, there is problems...
- 48 //fprintf (stderr, "NOT NORMAL thresholdValue = 160\n");
- 49 thresholdValue =160;
- 50 goto L;
- 51 }
- 52
- 53 // do the otsu global thresholding method
- 54 fmax =-1.0;
- 55 n1 =0;
- 56 for (k =0; k <255; k++)
- 57 {
- 58 n1 += ihist[k];
- 59 if (!n1) { continue; }
- 60 n2 = n - n1;
- 61 if (n2 ==0) { break; }
- 62 csum += k *ihist[k];
- 63 m1 = csum / n1;
- 64 m2 = (sum - csum) / n2;
- 65 sb = n1 * n2 *(m1 - m2) * (m1 - m2);
- 66 /* bbg: note: can be optimized. */
- 67 if (sb > fmax)
- 68 {
- 69 fmax = sb;
- 70 thresholdValue = k;
- 71 }
- 72 }
- 73
- 74 L:
- 75 for (i =0; i < h; i++)
- 76 {
- 77 np = (unsigned char*)(image->imageData + image->widthStep*i);
- 78 for (j =0; j < w; j++)
- 79 {
- 80 if(np[j] >= thresholdValue)
- 81 np[j] =255;
- 82 else np[j] =0;
- 83 }
- 84 }
- 85
- 86 //cout<<"The Threshold of this Image in Otsu is:"<<thresholdValue<<endl;
- 87 return(thresholdValue);
- 88 }
- 最大熵阀值
- 1 /*============================================================================
- 2 = 代码内容:最大熵阈值分割
- 3 = 修改日期:2009-3-3
- 4 = 作者:crond123
- 5 = 博客:http://blog.csdn.net/crond123/
- 6 = E_Mail:crond123@163.com
- 7 ===============================================================================*/
- 8 // 计算当前位置的能量熵
- 9 double caculateCurrentEntropy(CvHistogram * Histogram1,int cur_threshold,entropy_state state)
- 10 {
- 11 int start,end;
- 12 int total =0;
- 13 double cur_entropy =0.0;
- 14 if(state == back)
- 15 {
- 16 start =0;
- 17 end = cur_threshold;
- 18 }
- 19 else
- 20 {
- 21 start = cur_threshold;
- 22 end =256;
- 23 }
- 24 for(int i=start;i<end;i++)
- 25 {
- 26 total += (int)cvQueryHistValue_1D(Histogram1,i);//查询直方块的值 P304
- 27 }
- 28 for(int j=start;j<end;j++)
- 29 {
- 30 if((int)cvQueryHistValue_1D(Histogram1,j)==0)
- 31 continue;
- 32 double percentage = cvQueryHistValue_1D(Histogram1,j)/total;
- 33 /*熵的定义公式*/
- 34 cur_entropy +=-percentage*logf(percentage);
- 35 /*根据泰勒展式去掉高次项得到的熵的近似计算公式
- 36 cur_entropy += percentage*percentage;*/
- 37 }
- 38 return cur_entropy;
- 39 // return (1-cur_entropy);
- 40 }
- 41
- 42 //寻找最大熵阈值并分割
- 43 void MaxEntropy(IplImage *src,IplImage *dst)
- 44 {
- 45 assert(src != NULL);
- 46 assert(src->depth ==8&& dst->depth ==8);
- 47 assert(src->nChannels ==1);
- 48 CvHistogram * hist = cvCreateHist(1,&HistogramBins,CV_HIST_ARRAY,HistogramRange);//创建一个指定尺寸的直方图
- 49 //参数含义:直方图包含的维数、直方图维数尺寸的数组、直方图的表示格式、方块范围数组、归一化标志
- 50 cvCalcHist(&src,hist);//计算直方图
- 51 double maxentropy =-1.0;
- 52 int max_index =-1;
- 53 // 循环测试每个分割点,寻找到最大的阈值分割点
- 54 for(int i=0;i<HistogramBins;i++)
- 55 {
- 56 double cur_entropy = caculateCurrentEntropy(hist,i,object)+caculateCurrentEntropy(hist,i,back);
- 57 if(cur_entropy>maxentropy)
- 58 {
- 59 maxentropy = cur_entropy;
- 60 max_index = i;
- 61 }
- 62 }
- 63 cout<<"The Threshold of this Image in MaxEntropy is:"<<max_index<<endl;
- 64 cvThreshold(src, dst, (double)max_index,255, CV_THRESH_BINARY);
- 65 cvReleaseHist(&hist);
- 66 }
- 基本全局阀值法
- 1 /*============================================================================
- 2 = 代码内容:基本全局阈值法
- 3 ==============================================================================*/
- 4 int BasicGlobalThreshold(int*pg,int start,int end)
- 5 { // 基本全局阈值法
- 6 int i,t,t1,t2,k1,k2;
- 7 double u,u1,u2;
- 8 t=0;
- 9 u=0;
- 10 for (i=start;i<end;i++)
- 11 {
- 12 t+=pg[i];
- 13 u+=i*pg[i];
- 14 }
- 15 k2=(int) (u/t); // 计算此范围灰度的平均值
- 16 do
- 17 {
- 18 k1=k2;
- 19 t1=0;
- 20 u1=0;
- 21 for (i=start;i<=k1;i++)
- 22 { // 计算低灰度组的累加和
- 23 t1+=pg[i];
- 24 u1+=i*pg[i];
- 25 }
- 26 t2=t-t1;
- 27 u2=u-u1;
- 28 if (t1)
- 29 u1=u1/t1; // 计算低灰度组的平均值
- 30 else
- 31 u1=0;
- 32 if (t2)
- 33 u2=u2/t2; // 计算高灰度组的平均值
- 34 else
- 35 u2=0;
- 36 k2=(int) ((u1+u2)/2); // 得到新的阈值估计值
- 37 }
- 38 while(k1!=k2); // 数据未稳定,继续
- 39 //cout<<"The Threshold of this Image in BasicGlobalThreshold is:"<<k1<<endl;
- 40 return(k1); // 返回阈值
- 41 }
七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)的更多相关文章
- 【转】七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)
http://blog.csdn.net/xw20084898/article/details/17564957 一.工具:VC+OpenCV 二.语言:C++ 三.原理 otsu法(最大类间方差法, ...
- 【图像算法】七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)
图像算法:图像阈值分割 SkySeraph Dec 21st 2010 HQU Email:zgzhaobo@gmail.com QQ:452728574 Latest Modified Da ...
- 灰度图像的自动阈值分割(Otsu 法)(转载)
灰度图像的自动阈值分割(Otsu 法) 机器视觉领域许多算法都要求先对图像进行二值化.这种二值化操作阈值的选取非常重要.阈值选取的不合适,可能得到的结果就毫无用处.今天就来讲讲一种自动计算阈值的方法. ...
- 七种常见经典排序算法总结(C++实现)
排序算法是非常常见也非常基础的算法,以至于大部分情况下它们都被集成到了语言的辅助库中.排序算法虽然已经可以很方便的使用,但是理解排序算法可以帮助我们找到解题的方向. 1. 冒泡排序 (Bubble S ...
- Java枚举的七种常见用法
用法一:常量 在JDK1.5之前,我们定义常量都是:publicstaticfianl.....现在好了,有了枚举,可以把相关的常量分组到一个枚举类型里,而且枚举提供了比常量更多的方法. Java代码 ...
- 七种常见经典排序算法总结(C++)
最近想复习下C++,很久没怎么用了,毕业时的一些经典排序算法也忘差不多了,所以刚好一起再学习一遍. 除了冒泡.插入.选择这几个复杂度O(n^2)的基本排序算法,希尔.归并.快速.堆排序,多多少少还有些 ...
- 灰度图像的自动阈值分割(Otsu 法)
关于otsu分割方法,这个文章讲的是最好的,清晰易懂,一看就是作者认真思考过的. 因为在看这个算法的时候我就想,如果一个很大的图像上,大部分像素值都在0 - 50范围内,但是有很小一块像素值在240的 ...
- 七种常见的核酸序列蛋白编码能力预测工具 | ncRNAs | lncRNA
注:这些工具的应用都是受限的,有些本来就是只能用于预测动物,在使用之前务必用ground truth数据来测试一些.我想预测某一个植物的转录本,所以可以拿已经注释得比较好的拟南芥来测试一下.(测试的结 ...
- 第十四节,OpenCV学习(三)图像的阈值分割
图像的阈值处理 图像的阈值分割:图像的二值化(Binarization) 阈值分割法的特点是:适用于目标与背景灰度有较强对比的情况,重要的是背景或物体的灰度比较单一,而且总可以得到封闭且连通区域的边界 ...
随机推荐
- css 图片的无缝滚动
转载:http://blog.sina.com.cn/s/blog_6387e82401013kx8.html js的图片的横向或者竖向的无缝滚动图片. ttp://zx.bjmylike.com/ ...
- WinForm程序执行JS代码的多种方法以及使用WebBrowser与JS交互
方法一 使用微软官方组件Interop.MSScriptControl 1.msscript.ocx下载的地址 http://www.microsoft.com/downloads/details ...
- [转]论acm与泡妞
abstract :本文从各个方面讨论了泡妞与做题之间的相似之处与不同点,尽量的站在一个公平的角度阐述这一问题,所得的研究成果填补了国内外的理论空白. - 泡了一个好妞就好像做了一道难题一样快感都是相 ...
- 【Magenta 项目初探】手把手教你用Tensorflow神经网络创造音乐
原文链接:http://www.cnblogs.com/learn-to-rock/p/5677458.html 偶然在网上看到了一个让我很感兴趣的项目 Magenta,用Tensorflow让神经网 ...
- 数据结构——动态链表(C++)
定义一个节点: [cpp] view plain copy print? #include <iostream> using namespace std; typedef int T; ...
- ubuntu 下mysql中文乱码问题解决方案
mysql> show variables like 'character%';+--------------------------+----------------------------+ ...
- [转]为什么我要用 Node.js? 案例逐一介绍
原文地址:http://blog.jobbole.com/53736/ 介绍 JavaScript 高涨的人气带来了很多变化,以至于如今使用其进行网络开发的形式也变得截然不同了.就如同在浏览器中一样, ...
- Zookeeper总结
Zookeeper数据模型 zookeeper有一个层级的命名空间,更像一个分布式的文件系统. 唯一的区别就是命名空间中的每一个节点同它关联. ZNodes zookeeper树上的每一个节点被 ...
- 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳
因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...
- localStorage和sessionStorage
首先自然是检测浏览器是否支持本地存储. 在HTML5中,本地存储是一个window的属性,包括localStorage和sessionStorage,从名字应该可以很清楚的辨认二者的区别,前者是一直存 ...