CRB and His Birthday

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 430    Accepted Submission(s): 237

Problem Description
Today is CRB's birthday. His mom decided to buy many presents for her lovely son.
She went to the nearest shop with M Won(currency unit).
At the shop, there are N kinds of presents.
It costs Wi Won to buy one present of i-th kind. (So it costs k × Wi Won to buy k of them.)
But as the counter of the shop is her friend, the counter will give Ai × x + Bi candies if she buys x(x>0) presents of i-th kind.
She wants to receive maximum candies. Your task is to help her.
1 ≤ T ≤ 20
1 ≤ M ≤ 2000
1 ≤ N ≤ 1000
0 ≤ Ai, Bi ≤ 2000
1 ≤ Wi ≤ 2000
 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers M and N.
Then N lines follow, i-th line contains three space separated integers Wi, Ai and Bi.
 
Output
For each test case, output the maximum candies she can gain.
 
Sample Input
1
100 2
10 2 1
20 1 1
 
Sample Output
21

Hint

CRB's mom buys 10 presents of first kind, and receives 2 × 10 + 1 = 21 candies.

 
Author
KUT(DPRK)
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:  5416 5415 5414 5413 5412
 
大致三种方法:
1.  01背包+完全背包
先跑一遍01背包,价值为a+b的,然后再按价值为a的完全背包跑。

 #include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 2005
#define M 12 int n,m;
int f[N],w[N],a[N],b[N]; int main()
{
int T;cin>>T;
while(T--)
{
scanf("%d%d",&m,&n);
for(int i=;i<=n;i++)
scanf("%d%d%d",&w[i],&a[i],&b[i]); memset(f,,sizeof(f)); for(int i=;i<=n;i++)
{
for(int j=m;j>=w[i];j--)
{
f[j]=max(f[j],f[j-w[i]]+a[i]+b[i]);
}
for(int j=w[i];j<=m;j++)
{
f[j]=max(f[j],f[j-w[i]]+a[i]);
} }
cout<<f[m]<<endl;
}
return ;
}

2. 完全背包的思路。每次有三种选择方案,1不选第i件物品,2选一个第2件物品,3选2个以上的第二件物品。

用一个辅助数组g记录上一行(上一个i)的最大糖果数的值,因为完全背包空间是从小到大的,所以同一个i后面的空间会用到前面的的值,这也就是完全背包的内涵,但是用了辅助数组g,记录上一行的状态,就保证使用a+b不会用到前面的值。

转移方程:f[j]=max3(f[j], f[j-w[i]]+a[i], g[j-w[i]]+a[i]+b[i]);

 #include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 2005
#define M 12 int n,m;
int w[N],a[N],b[N];
int f[N];//f[j]表示j元钱可以得到的最大糖果数
int g[N];//g[j]表示上一个i,j元可以得到的最大糖果数 int max3(int a,int b,int c)
{
return max(a,max(b,c));
} int main()
{
int T;cin>>T;
while(T--)
{
scanf("%d%d",&m,&n);
for(int i=;i<=n;i++)
scanf("%d%d%d",&w[i],&a[i],&b[i]); memset(f,,sizeof(f));
memset(g,,sizeof(g)); for(int i=;i<=n;i++)
{
for(int j=w[i];j<=m;j++)
{
f[j]=max3(f[j], f[j-w[i]]+a[i], g[j-w[i]]+a[i]+b[i]);
}
for(int j=;j<=m;j++)
{
g[j]=f[j];
}
}
cout<<f[m]<<endl;
}
return ;
}

3. 还是完全背包的思路,用dp[i][j][0]表示不取第i件物品,花费j得到的最大收益,dp[i][j][1]表示取第i件物品,花费j得到的最大收益,最终的结果就是max(dp[i][j][0],dp[i][j][1])。每次对于物品i,先得出不取它能得到的最大收益,然后再求取它能得到的最大收益。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; const int N = ;
int dp[N][N][]; int main ()
{
int t;cin>>t;
while ( t-- )
{
int m, n;
scanf("%d%d", &m, &n);
memset( dp, , sizeof(dp) );
for ( int i = ; i <= n; i++ )
{
int w, a, b;
scanf("%d%d%d", &w, &a, &b);
for ( int j = ; j <= m; j++ )
{
dp[i][j][] = max( dp[i-][j][], dp[i-][j][] );
}
for ( int j = w; j <= m; j++ )
{
dp[i][j][] = max( dp[i][j - w][] + a, dp[i][j - w][] + a + b );
}
}
printf("%d\n", max( dp[n][m][], dp[n][m][] ));
}
return ;
}

第一位空间可以压缩,把声明改成 int dp[N][2];最后结果改成max(dp[m][0],dp[m][1]).

中间关键代码换成

    for ( int j = ; j <= m; j++ )
{
dp[i][j][] = max( dp[i-][j][], dp[i-][j][] );
}
for ( int j = w; j <= m; j++ )
{
dp[i][j][] = max( dp[i][j - w][] + a, dp[i][j - w][] + a + b );
}

HDU 5410 CRB and His Birthday(完全背包变形)的更多相关文章

  1. hdu 5410 CRB and His Birthday(混合背包)

    Problem Description Today is CRB's birthday. His mom decided to buy many presents for her lovely son ...

  2. hdu 5410 CRB and His Birthday 01背包和全然背包

    #include<stdio.h> #include<string.h> #include<vector> #include<queue> #inclu ...

  3. HDU 5410 CRB and His Birthday ——(完全背包变形)

    对于每个物品,如果购买,价值为A[i]*x+B[i]的背包问题. 先写了一发是WA的= =.代码如下: #include <stdio.h> #include <algorithm& ...

  4. HDU 5410 CRB and His Birthday (01背包,完全背包,混合)

    题意:有n种商品,每种商品中有a个糖果,如果买这种商品就送多b个糖果,只有第一次买的时候才送.现在有m元,最多能买多少糖果? 思路:第一次买一种商品时有送糖果,对这一次进行一次01背包,也就是只能买一 ...

  5. HDU 5410 CRB and His Birthday

    题目大意: 一个人要去买礼物,有M元.有N种礼物,每件礼物的价值是Wi, 你第i件礼物买k个 是可以得到 Ai * k + Bi 个糖果的. 问怎么才能使得你得到的糖果数目最多.   其实就是完全背包 ...

  6. HDU 5410(2015多校10)-CRB and His Birthday(全然背包)

    题目地址:HDU 5410 题意:有M元钱,N种礼物,若第i种礼物买x件的话.会有Ai*x+Bi颗糖果,现给出每种礼物的单位价格.Ai值与Bi值.问最多能拿到多少颗糖果. 思路:全然背包问题. dp[ ...

  7. HDU 2159 FATE(二维费用背包)

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  8. HDU 1712 ACboy needs your help(包背包)

    HDU 1712 ACboy needs your help(包背包) pid=1712">http://acm.hdu.edu.cn/showproblem.php? pid=171 ...

  9. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. kernel/module.c

    #include <linux/errno.h>#include <linux/kernel.h>#include <asm/segment.h>#include ...

  2. ODOO 源代码安装要求

    ODOO 源代码安装要求 ref:http://www.odoo.com/documentation/10.0/setup/install.html#setup-install-source pyth ...

  3. 《C与指针》第七章练习

    本章问题 1.具有空函数体的函数可以作为存根使用,你如何对这类函数进行修改,使其更有用? answer:Have the stub(存根) print out a message when it is ...

  4. [HNOI2008],[bzoj1008] 越狱(dp+组合数学)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1008 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人 ...

  5. 2016HUAS_ACM暑假集训2L - Points on Cycle(圆上的点)

    一个简单的几何题,自己在纸上列出方程解出结果的表达式,再用程序表达出来就行了. 不过老司机(老司机的woodcoding)说用旋转向量法比较简单,有时间要去看一看. 大致题意:一个圆心在原点的圆,半径 ...

  6. MySql数据库索引原理

    写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储100条记录.如果没有索引,查询将 ...

  7. Docker run命令详解 转

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Usage: doc ...

  8. Jetty与Tomcat的区别 转

    Jetty与Tomcat的区别 由于没有研究过Tomcat,所以区别不好说,这里暂时就网上的一些言论和自己所了解到的一些总结下(摘自于许令波). Jetty 的架构从前面的分析可知,它的所有组件都是基 ...

  9. docker中使用systemd

    由于以下几个原因,docker的官方centos镜像中没有提供systemd服务:   systemd requires the CAP_SYS_ADMIN capability. This mean ...

  10. Tomcat长出现的内存溢出问题

    以下内容转载自博客:http://www.cnblogs.com/apaqi/archive/2012/07/09/2582480.html 在eclipse.ini配置文件中加上以下两行 -XX:P ...