[问题2015S05]  设 \(A\) 是 \(n\) 阶复方阵, 证明: \(A\) 可对角化的充分必要条件是 \(A\) 相似于某个如下的循环矩阵:

\[C=\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n\\ a_n & a_1 & a_2 & \cdots & a_{n-1}\\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2}\\ \vdots&\vdots&\vdots&&\vdots\\ a_2 & a_3 & a_4 & \cdots & a_{1}\\ \end{pmatrix}.\]

问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0

[问题2015S05] 复旦高等代数 II(14级)每周一题(第六教学周)的更多相关文章

  1. [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)

    [问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...

  2. [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)

    [问题2015S08]  设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...

  3. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  4. [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)

    [问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...

  5. [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)

    [问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...

  6. [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)

    问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...

  7. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  8. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  9. 复旦高等代数II(18级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...

随机推荐

  1. IOS第16天(1,Quartz2D基本图像绘制)

    ***************基本图像绘制 画线 #import "HMLineView.h" @implementation HMLineView - (id)initWithF ...

  2. IOS第七天(6:UiTableView编辑模式, 拖动位置 ,滑动删除)

    **********UiTableView编辑模式, 拖动位置 ,滑动删除 #import "HMViewController.h" @interface HMViewContro ...

  3. Final-阶段站立会议4

    组名:天天向上 组长:王森 组员:张政.张金生.林莉.胡丽娜 代码地址:HTTPS:https://git.coding.net/jx8zjs/llk.git SSH:git@git.coding.n ...

  4. 同时使用python2和Python3

    问题:thrift生成的是python2代码,之前使用的是Python3因此需要同时使用两个版本. 方案:将python3的可执行文件重命名为python3(默认为Python),这样使用pyhton ...

  5. phpcmsv9的评论分表策略

    comment_table表 comment表 comment_data_x表 我们留意到: comment_table表统计每个comment_data_x表里面有多少条记录, comment表只是 ...

  6. C# Lock 解读[转]

    一.Lock定义     lock 关键字可以用来确保代码块完成运行,而不会被其他线程中断.它可以把一段代码定义为互斥段(critical section),互斥段在一个时刻内只允许一个线程进入执行, ...

  7. centos7下更改java环境

    1.上传下载的java包,如http://download.oracle.com/otn-pub/java/jdk/8u77-b03/jre-8u77-linux-x64.rpm,目录可以自己定义一个 ...

  8. websocket 403

  9. 转:EntityFramework查询--联合查询(Join,GroupJoin)

    首先我们先看一下Join public static IEnumerable<TResult> Join<TOuter, TInner, TKey, TResult>(this ...

  10. Oracle中用户的基本操作

    创建用户 1.首先登陆到系统用户sys(sys用户具有创建用户的权限). 2.然后在代码编辑框写入创建用户的代码. 语法:CREATE USER user_name IDENTIFIED BY pas ...