hdu 5291 dp+优化 ****
多校实在高能
题意:有n中糖果,每种糖果有ai个。分给A,B两个人。两人的糖果要一样多,可以都是0,1......m个。同一种糖果没有区别。
问有几种分法。
定义dp[i]表示两人之间相差i个糖果的情况数。对每种糖果进行处理 *dp[i]表示新计算得到的dp值
当当前有ai个i种糖果时。处理*dp[j]
*dp[j] = dp[j]*(ai/2+1) + dp[j-1]*((ai-1)/2+1) + dp[j+1]*((ai-1)/2+1)
............+dp[j-ai]*((ai-ai)/2+1) + dp[j+ai]*((ai-ai)/2+1)
表示dp[j-k]*((ai-k)/2+1)表示原来A,B相差j-k个糖果,但是通过分第i种糖果,先给A分了k个糖果,让后剩下的糖果再平等
地分给A,B。那么分完之后就相差j个糖果了。由于提前给A,k个糖果,那么剩下ai-k个糖果,平分剩下糖果的情况有(ai-k)/2+1种。+1是两
个人人都分0个。
假设ai = 2 j = 0, 那么dp[0] =
dp: dp[-2] dp[-1] dp[0] dp[1] dp[2]
系数:1 1 2 1 1
算出*dp[0]之后,算*dp[1] = *dp[0] + dp[1] + dp[3] - dp[0] - dp[-2]
可以发现此时只要把[j+1,j+1+ai]的奇数位置的dp值加起来 - [j-ai,j]偶数位置的dp值 + *dp[0] = *dp[1]
转移变成O(1)的了。
假设ai = 3 j = 0, 那么dp[0] =
dp: dp[-3] dp[-2] dp[-1] dp[0] dp[1] dp[2] dp[3]
系数:1 1 2 2 2 1 1
同ai = 2相反。找规律即可。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
#define ll long long
int dp[],sum[][];
int mod = ;
int modx = -mod;
int num[];
int main(){
int t,n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
int total = ;
for(int i = ; i <= n; i++){
scanf("%d",&num[i]);
total += num[i];
}
if(total & ) total++;
memset(dp,,sizeof(dp));
memset(sum,,sizeof(sum));
dp[total] = ;
int tt = total*;
for(int i = ; i <= n; i++)
{
sum[][] = dp[];
sum[][] = ;
for(int j = ;j <= tt; j++)
{
sum[][j] = sum[][j-];
sum[][j] = sum[][j-];
sum[j&][j] += dp[j];
sum[j&][j] %= modx;
}
ll ans = ;
for(int j = ;j <= num[i]; j++){
ans += (ll)dp[j]*((num[i]-j)/+);
ans %= mod;
}
int p = (num[i]&)^;
int res = ans;
for(int j = ;j <= tt; j++)
{
dp[j] = res;
int u = j-num[i]-;
u = max(u,);
res += (sum[p][j++num[i]] - sum[p][j])%mod;
res %= mod;
p ^= ;
res -= (sum[p][j] - sum[p][u])%mod;
res %= mod;
}
}
int res = dp[total];
res %= mod;
res = (res+mod)%mod;
cout<<res<<endl;
}
return ;
}
hdu 5291 dp+优化 ****的更多相关文章
- NOIP2015 子串 (DP+优化)
子串 (substring.cpp/c/pas) [问题描述] 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个 互不重 叠 的非空子串,然后把这 k 个子串按照其在字 ...
- LCIS tyvj1071 DP优化
思路: f[i][j]表示n1串第i个与n2串第j个且以j结尾的LCIS长度. 很好想的一个DP. 然后难点是优化.这道题也算是用到了DP优化的一个经典类型吧. 可以这样说,这类DP优化的起因是发现重 ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- HDU 5928 DP 凸包graham
给出点集,和不大于L长的绳子,问能包裹住的最多点数. 考虑每个点都作为左下角的起点跑一遍极角序求凸包,求的过程中用DP记录当前以j为当前末端为结束的的最小长度,其中一维作为背包的是凸包内侧点的数量.也 ...
- 取数字(dp优化)
取数字(dp优化) 给定n个整数\(a_i\),你需要从中选取若干个数,使得它们的和是m的倍数.问有多少种方案.有多个询问,每次询问一个的m对应的答案. \(1\le n\le 200000,1\le ...
- dp优化1——sgq(单调队列)
该文是对dp的提高(并非是dp入门,dp入门者请先参考其他文章) 有时候dp的复杂度也有点大...会被卡. 这几次blog大多数会讲dp优化. 回归noip2017PJT4.(题目可以自己去百度).就 ...
- loj6171/bzoj4899 记忆的轮廊(期望dp+优化)
题目: https://loj.ac/problem/6171 分析: 设dp[i][j]表示从第i个点出发(正确节点),还可以有j个存档点(在i点使用一个存档机会),走到终点n的期望步数 那么 a[ ...
- 常见的DP优化类型
常见的DP优化类型 1单调队列直接优化 如果a[i]单调增的话,显然可以用减单调队列直接存f[j]进行优化. 2斜率不等式 即实现转移方程中的i,j分离.b单调减,a单调增(可选). 令: 在队首,如 ...
- 【学习笔记】动态规划—各种 DP 优化
[学习笔记]动态规划-各种 DP 优化 [大前言] 个人认为贪心,\(dp\) 是最难的,每次遇到题完全不知道该怎么办,看了题解后又瞬间恍然大悟(TAT).这篇文章也是花了我差不多一个月时间才全部完成 ...
随机推荐
- CPU时间戳获取
inline long long timt(){ long long p; int&a=*(((int*)&p)+1); __asm__ __volatile__("rdts ...
- Docker内部存储结构(devicemapper)解析(续)
dm.fs 参数dm.fs可以指定容器的rootfs的文件系统,但只支持ext4/xfs: func NewDeviceSet(root string, doInit bool, options [] ...
- JavaScript——this关键字
请看下面的代码,最后alert出来的是什么呢? 1 var name = "Bob"; 2 var nameObj ={ 3 name : "Tom", 4 s ...
- hashCode与equals的区别与联系
一.equals方法的作用 1.默认情况(没有覆盖equals方法)下equals方法都是调用Object类的equals方法,而Object的equals方法主要用于判断对象的内存地址引用是不是同一 ...
- Python之异常追踪模块:traceback
正常时输出追踪信息: import traceback def stack(): print 'The python stack:' traceback.print_stack() from twis ...
- ios NSString 转 float的注意
今天有一个字符串 “33.3”,用想用[valueString floatValue];得到33.3000这个值,结果得到了33.2999这个值,取前3位一个是33.3,一个是33.2,产生了错误,应 ...
- php实验一
实验准备 实验一:PHP开发环境配置,学习安装和使用集成PHP开发环境. 一. 分别下载和安装WAMP ,AppServ,XAMPP,phpstudy等软件,并测试页面. 开发环境配置 1)单独需要三 ...
- Linux下编译安装Apache 2.4
Linux一般会自带httpd服务,但是版本一般不是最新,性能也不是最好,生产中建议手动安装官方源码包,安装Apache官方包之前首先要停止之前的httpd服务,停止后也可以卸载之前的版本 准备工作做 ...
- ACM/ICPC 之 四道MST-Prim解法(POJ1258-POJ1751-POJ2349-POJ3026)
四道MST,适合Prim解法,也可以作为MST练习题. 题意包括在代码中. POJ1258-Agri Net 水题 //Prim-没什么好说的 //接受一个邻接矩阵,求MST //Time:0Ms M ...
- 针对跑MySQL的Linux优化【转】
本文来自:http://www.mysqlsupport.cn/linux-performance-tuning-tips-mysql/ 因为很多MySQL的生产环境都在Linux下,我决定指出一些L ...