NYOJ题目893十字架
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAQRCAIAAACl4dlPAAAgAElEQVR4nO3dO1Ljyv834P8myFkIsRfClBMyVkDiBCJykqly+iYEUJM6/wVTRTKTOZvwLMFvoIt1V8t8bWTzPDV1DphWWxdb/VGrJf3fDgDg0/7vq2cAALgEIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAd/G24/766v766ufbxMm+vd8kzbV68/rq/vrH78/NYvAGRMp4Ns4KFL8vrvKprq/ex0s2Bkpshfr/0bqAc6VSAHfxmik+Pv02E4Ag/9+vvVPtXj6J1LAdyJSwLfxZZHi5tff3a7s8BAp4EKJFPBtJEeK8TMj7ZJZ5Yunf+XwC5ECvhmRAr6NY0aKLEY8Pv8pf76/e92JFPCdiBRwgcrLNNL/PT7/qQSFrjEQ+38/fjcjRV90ECngGxEp4AIdGCn2xiJF/e3yrLC4eWxWaHgmfCMiBXwbB11EmtlfSlp0ObT+dPPrb7VYFjtECvhGRAr4Ng6MFH9+LTp7MvZ+37Xq/ER8Ac6USAHfxlgz/+nTJRPeC7g8IgV8G8eJFJFBBDhnIgV8G5888dEzBkKkADIiBXwbx4kU3YUNyYTvR6SAb+PASFFctTEaC8o7cy+e/u3fqwwZzUtFgAsjUsC3MSlSFIXTzlZULhbNkkftvWpdFwZswqUSKeDbmNZLUb+lxOLpX0+5yr0oWo/86HrFWAq4VCIFfBvHurDzz69FKyX0vNe/55uBdAKcNZECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFJwJjarxXK9LX/drpfF75vVostyvc2KlVab2q/lq9U6V5vddr2svlN1DvZlv4FDlrdv3TUrHihkk8HZEimYjXo0aDYRHe3QQNNUtDF5k1O8UP5aqaL8vfhjs30qynyifXr70b4L9b/nm95bVk95/WiOFSlaG6Hnz1+5ySrPOSuev1p9lEn1wao9rzce8v7jd1F1Xz31RazO92aVfx+a4Xk8vcFpiRTMRiUhjOWH0aaiGSnyCYYOebv+VuzID2+fymdl1SPF77t6W3Xoz8eUtLw9XUTNZq9z5XaX/vJN9vfpsevBZn2rvef115+VLf77bv8BSNh81UixWe0XuB41NiuhgrkRKZiNZqRY95/QKJuKdqNSvl6JFOVB7MAh7/7dpx7ybtfLkX1761lZrz+rx6Z/nx7zo9iprzdW32K1LtdHdjqg0QbXEsBYY5saKaqL3j49NaFrqZzmKzfZn1+LSdEhLeG9/Sg7KqZEiu162QwR9ZM+zuswLyIFs3FIL0WjLWm9vl0vs3Z2n0D6etG327ye40eKSgOz2+2yx4j/fJv+ek3ZPV7MUu2XYgkqR/irkSPcAyJFc/22IkVWYGj0yxdvsr9Pjx1nIna7T0WK15+Vbo/0SNHqhqhFispoIpgLkYLZaI2lqLUmvZEioZdivBe9v2N+uV5/eizFySJFrTei1fhMbISmR4pakslfaI6p7aiyPtnXbrK3H/fXN4+VYRDleq6PgegbG1HvPfr79NgaLTFUfr9SF8tluw+iGcV0UTA3IgWz0dFLUWmDPtFLsW9c8l9rLU2r2YkfnjmTSLFvhZOCxdRIkb9NtQegtio7uwaqQwX2xb5uk739qCWAxq+F33fdaaDn9T+/Fs3BNIPlsw6n5bK5apz4YO5ECmaj+8RHpXX4ZKSoD/3bt7H5Xrn7qLfSmp1/pKgv51iumBIpskrrQzbqF3duVovlctk/RKacp6/dZM1V/efXomOoZu/5kZjXi63XDGGNK0Fav8NXEymYjQPHUnR1itciReUP+16PvA+5axxAc2RgfKQ43vDMhEjR/1q7wvQrPlp1FUMisj9kdY1t1nLCr9tkzTa+Ngyiv9jY6z29HSORYteIao0IoZuC2REpmI3WWIrmX8d7KUqtXory5fI8/apxiNfbPlXmIOqKj2NcRJoylmJVXYNjrdEhV3w0tDuR0iLFV26y6gWf/55v8k6Lv0+P+y1YOZHR9/rbj8o2qlxF0le+uVIaPT5lMGtc/yFRMC8iBbNxSC/FWF0d7VMlr9R2yvX2Ke+e72jbWgYjRXlfivp9k6p/ap7CmPr6fpHHeimqoS3pJpcziRSn3WS1EZRlb9Drz+7tGPV6Y6W0V8FyvW0Mz3S9B7MjUjBvlb1o/aRyZ1PRKt0+au06A9AaH1gr1HF7h2/hE5Fivx2aoyarYzm7G0abDM6WSAF0OnzsCPA9iRRAJ5ECmEakAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFfCf5zSgT7jnhERLARCIFXK7qQyEaj4hvPzes8QSJTtMjxr/nm8FHkwCXQ6SAbyDvlehODfuQkSeGxnM1Dr+NZsIDVIHLIVLA5dqsyqenFQ+yzMNBx1Phi8eHD+h69uXAUz1ff17f/Ppb/Pb36XH/YE/gAokUcMHy5JCnhe7EUHmi/CG9FP2R4u3HfS1DvP50+gMumkgBF22fJlabSjjo6aUoI8Wnx1DsRAr4dkQKuGzVXoTESBFEpIBvRqSAC1e5tqNzeGYeLbbr5WK16b/sY3rcECngmxEp4LJlISHLDUO9FLXrS2t/26z6xl+OMDwTvheRAi5ZFg+yHojBSFHPEdv1crFcb4cu56gW7SviIlL4VkQKuFxFlKhdRtp5TqPRM7FdL1PPeIyljrcfbnUF34RIARerNeCydwRm9od94mhcQ/q5Kz+Ab0KkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAECAlUrz+vL66v/7xu/j9993V/fXVz7fmz7m/T4+Vwu1Kft/VywMA5y88UmSFr+7vXrsreftxf311f331+PwnZgkAgBmYFCn+/FpcZYGg+18WI/4+PV63ui6queTv06NIAQCXZSRSZJ0Qxb+bX3/3L/ae+Njt/j3f3N+9/vv79HMgfxS1AQAX4AhjKboU0aQ9xgIAuASHRIoBlV6NSvniVEg2lsIpDwC4PNMixb/nm4QTGV29Goubx0phV3wAwIU5JFJk3QyVUx7ZsM2eSPH24/766udb44oPAykA4KKkR4qr++ubn3dTI0X5c6urY/H072hLBQCc2HCkqF41ekAvRT75z7ddPWcU1TbvXQEAnKsjjqX4mQ3VzHsj6mdD/j496qUAgAty3LEUv+96x2wCAJfk+MMzW5UAAJcnPlJUTo4IEADwXSREiuxGVYunfyljKd5+lJljsLDhmQBwUUYiRRkLsptTVXspKva9FP/efjwKCgDw/aSc+AAAGCFSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAoxEis1qUbVa1X/PX910Tbdcb0dqrpXYrpeL3mn2hTerzvf7jO16eVid2/UyfbLtetl4k451tF0vO9ZvwvrebdfLnrXXU2el8KTlqMx9c6L2InYtbPIW7K1uu15mdRXz0Pz/ASbU2bG6+td+q1jv1pvRdh/akBXjX/L6vCRum3JT9FY1+j1qSf7QjVXW+Dg0VnLi6oiQvtcKWPZJn6Xa9hvemAc66bKXfz/adp/67Ziw/wxeS0lSeikq3+LWmu/e+4x+y5uTbdfLxXK16tk91tqj4E/odr1cLJedK3/Tzk/Zm+ffn+JrtFmVrVHvl65zT5iyGdM390DJ+hasFTr847RZLdqpsKeqQ7bgSEJZbbL/7hfooGh0SJ09YXDkzQc+ad1z82XbPS1SJG7J3rjUN/FgK3Tg92jCp7yvaPvbvdrUZucorWePKZ+lgGUv3jLxs1TJuUdYKSde9uNu94nfjvRlP9JaSnBgpChfqv2QIm+Ll+tt+cmrxKnNatFauv3bd7TZZZ2HKVdmwlqtNqHZLK9Wq1WzXe0o31w1+SpI28F2z9iUtb3r2x0Mdgwlqe9bhroVErZgyjL1lsu/5ilrtMvUOovg0av15lM+abveYsfZ7gm1dn6QR94929rtzdD1Ja8klGqHUbsjs/E2id+j3pU+sX9o33xk6/NrIsW0z1LQsk/bh+wPt4KPAb9k2Y+y3Sd9O+pLM7rsQWvpIGGRorN4X3XL9Tava9Pq9Gl2A5XL29shcujaqB9mj3Red3QjDW6JSvnaZ26zWqw2HZ00fX2Fo5s75RPdsTs40hmkvpyfuAWrnQIjX9usQa99TiqB77D92DHqLOod/aR93Xbv6jPs/XiWszf86dkvcrVoz2609paVd6s3WBO/R8256WtaRtZi9T32n4f81S+IFJP2WsUEAct+2D4kNlJ81bKHb/eJ3476JMV8fL5kZYKTRYp6mFttxiNFYwk6OyrLA4rNetl5tLdaVVNW9mNxeqFW6cGf2MrOar9CO2JDda4bB+SDvRTV8s1d4XLZ3MifiRQpq2Cg07LvtZHaGim+8Xq+ecuxExO2YH1r7Ps2VuvttlZosVyvV+UbbderZbnaDoqZiXUWH9aeN2hvruRP2tdt96mRYuAQr//bM7TWagvTeLf9UVvy92io+6hzZnsnaK6V5kx2f+SPJuGzdJxl36V+lpKO/g9aTV+27Eff7qPfjgmt1THW0kSH91KUvZTNpjbl/Po27bT3ZpWNsBjrB0ntkV0U3SPVT0F9593Z79TOSfnXJ29lus6s92SEStPUeTTc1bS0F6G+jnqXdHDV7D9uB3/F241nc82lbsH6JLWGrvlZ2W+vfSfkIsu79Q7zCZ+KdWqd7Vns7FGr/J78Sfu67T4pUjSXuWPL1Wsq5yr7pePDVl+57aO+/aHhlO9Rc2VN2kW2dgObynmZ+iIdfLR67L1W2LJ/Yh/S3iLZK2ez7EfY7qWkb0f6sp9uLQ06MFLUVnQ5N2VEGk5/9T1W54er2I/nH75V2SVaDr4o9vtTV0V79XUfWDYPlKbkoq4ujdb3sPoutf3itKPVrsa5M3J1HGEMfcxGJUWK9C2Yuo+pfJF7DvMP72tNrrO5vRZFl9vwp2b4k/Z12z09Umx7uhVbm2ez7+yp/NrzLW81YO3kULz5hO9R1aSdZmLhw5uS6Q7Za/WXnPRG1eqn7kM6ZmnoYCJ1lk6+7DUB2z3525G+7OtTraVRh0WKfB20F2HRzFmdzUxtr9DeQq2Dln0SaeaYTc95hylSdt5T3qOrp6Z7H1n+5fBI0TlzXU1LswO/2Z03+SOV1ktRe33CFiybj3aFHV/ASoPX7g1PMbHO3sPx4bU4vC2/brsnxLnax7Sv5e54vVixXfuAardQ10w3Dxkmfo+a79f1l9RO4PKE2Ki4XfOw9Gbg88tefBGm7kPyd24W+/Q6OuWyH3W7j387kpfoNCVTpEeK/Wdhu17WerM3++vuWkeI45+gxEhRXexGt1PAqayBWZy6vjvDYc+ucNf14pSmpfuvra1Qqb/9/gd+oMqNsFlVDhcHIkXqFiz6uvZHxF3nlaqHSfXOvsM+DZPqbB2m1c609K7MuEgRu93Teyn2U47uWWsduZUatv0nThoz13GAO+V71L2so5I6uTbZ+bzlanW6norWHMQ3GEPLPnkfUnut/JIf3oc4/G6fLXni7X7wt+MSIkXthM+u3MN294MlR4p9PkvupRiv9DCDK/TTXRS7hF1hfXnSm5a+BrS5FRotYP3A79AmsGzxRw9A0rdgrSGpZ9jqyP/Npnoudl9PT+hPManOytFX9xiH/hPLIZHi2Nt97Ps1oZei/o4pW6c/l038HjXmLKZpqfTPbqsj9VpR7vBD1zSnblYnfpb6PqIhu+4viBRp2/3gd0/+dpx/pGh8Miq7/NoOvyySECmaOayz13UmkWJ4z5tavucccG0O6guc0rT09441JqnXvt8dDHWvlfM9fKDcOgl+eKRoz03XsfOiNvOL/Hau5bm4fV/BIccQaXVma/egb2FIpDj+dj80Ugxt/8aXuudNh3eqE79Hjb98smmptCn72dkXrM59sR4iDsiHZvOEzeqkz1JXD1Nu6g61dzZPtuwTtntTWjOV9u2ozc9ZR4rG+7bCaTMAbFZjp5+6GtzkXor0MDdB7Art0H10VdtBrjbNV4Zkq7g5XqN7JXcfuSZ1vgwddO4XaqAXvDIc4YAtONjB1V741itTdufpda7Ly3sGFrxn8Xo+aXPb7lMjxWDvTnO9dtSVUKp4n6TvUc+7jHzg9jOc+MFp77hadZ1LL8XIsk/4LHVljN7P6KFOuextA9u9VfPQ53Hau1anvJRIwTczmCgA6PVd958iBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAUyPF2E1m+2+sV94pbPiug43brO3r67yHc+te34O3NixvJd64BclR75wLAN/C9F6Kvrt3thvxyu3ud7vUG5k2mvdqbGiGipFI0b4tbPvBb11vCQBMNxYp0p4/UG3189Z5fx/4sEjR//Sadm/IeiBSFFMOdZd8y1upAsDhEiLFSA6opoZ9k5+/2hcp2kml0r3QHymGnrFbn3bgxEf+/pV5lh8A4LPSTnz0Hs83x01UM8P+ofLtNr2RVOpZYChSVDTTTu3ZkUMnPhqv5gVFCwD4hEOv+Gg9xLaMArXnvw/0Unw6UjT+VIs9q1VfpKg/d7j+xiIFABzqkEiR+Hj1oXMmAZGiNa5isVonXfFRCTr9oymkCwCYZCRSpF7wuVyvp1waelikqMWLZqLIT7MknfhoX4/aOQUAkOygi0jHL9zYrBbL1Wq5XK26eyomDs/MitdGV9Ym2r88JVIM5iXxAgCmiI4UeTO92jRGaPY3/oPVd2WHchjmdr1sDRCN7aWoD7wAAHqFRYpKlsjVYkPZLTHWOteqr11Esq9lX0c9VSTdPXOzWiyWq1UrVHSGkMVq41ZYAJAgPVLsG+nE9jXt1lZl2bFTDrVrROvz1XFNSW8vRTbqor5AvSc+9FIAQCKPDQMAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAAGmRYrteLtfb3r8tVpuEggDA5UqKFFlq2KwWVUV0qEWKzWr/c/63rmkm26zGpx0rU85MdQ7PoB4AOAcpkaLS9VDLD7vWS81WtNZpcVgPRhlkBqZNKLNZLapz2d2Mz60eADgfCZGi0uJ1neTo7MLIm9O0SLFdL0c6MLbr5WgvxWCZetbpCEbzrQcAzsJopMi657MGr3oeY7WpRYrdblc97ZH/NJdI0ewHGOoXmFs9AHAWRiLFdr1crFZ5UigbviwctCLFPlEU6SHgxEc5GyIFAMzYSKTYrFabPCrkXRT5T9n/apGinShECpECgO8iZXjmZpUNllhtypGHlbMaRaTIIsdyva0MFBApRAoAvonkSFH9rdYF0RyyWb0sci6RwvBMADiyiZGio53sihSL2qCL/d++7IqPCRdtzq0eADgLUyLFdr3saPuqAyf2ySBrJtNudTUYKRpXpw7fB2L41lFFsd7me271AMD5SI8UrWPpWo9E9zF51IkPAGDmPDYMAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFmGSnqz+n8XmUA4DzNLFKUD9waaHovtQwAnLOZRYrdbhfxKPPzLQMAZ0qkmFcZADhTIsW8ygDAmRIp5lUGAM6USDGvMgBwpkSKeZUBgDMlUsyrDACcqZlFivL+DZnV5huVAYBzNrNIAQCcJ5ECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFmGSk2q+HHa23Xy6RnZUTUc8r3AoDzNbNIUT5eq7953qz2zXL152PUc8r3AoCzNrNIsdvtRh4CXu8N2K6X/e3zp+s55XsBwHk7t0jRPMYfOub/bD2nfC8AOHMiRX89IgUAJBMp+usRKQAgmUjRX49IAQDJzi1SGJ4JALN0dpFiwgWZn6/nlO8FAGdtZpGivMfD8G2himK9TXNUPSd+LwA4WzOLFADAeRIpAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBglpGi/uTOtu16mfS8jIh6TvleAHC+ZhYpykdwffKpnkH1nPK9AOCszSxS7Ha7kQeF13sDtutlf/v86XpO+V4AcN7OLVI0j/GHjvk/W88p3wsAzpxI0V+PSAEAyUSK/npECgBIJlL01yNSAECyc4sUhmcCwCydXaSYcEHm5+s55XsBwFmbWaQo7/EwfFuoolhv0xxVz4nfCwDO1swiBQBwnkQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAASYZaSoP7nze5UBgPM0s0hRPoJroOm91DIAcM5mFil2u93Yg8IvuwwAnCmRYl5lAOBMiRTzKgMAZ0qkmFcZADhTIsW8ygDAmRIp5lUGAM6USDGvMgBwpmYWKcr7N2RWm29UBgDO2cwiBQBwnkQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAASYXaTYrpejz8FIKbPb7Xab1fBjuqLqiSwDAOdpXpFis9o379Wfp5bZP6arvwmPqiesDACcs1lFivpR/Ha97GjnU8pU/tjbhEfVE1wGAM7UnCJFs6+gq+8gpUxhqAmPqie6DACcKZHic/VElwGAMyVSfK6e6DIAcKZEis/VE10GAM7UnCKF4ZkAcLZmFSniLiLd7XZjTXhUPbFlAOBMzStS7Hb7WzgM3X5qtEx5H4jhciH1RJUBgHM2v0gBAJwhkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAWYXKbbrZdJzMOpPEr2cMgBwnuYVKZKeDlo+gmugeT7HMgBwzmYVKepH8dv1sr+r4pQPHPdwcwAYNadI0eyX6O2n2M0vCogUAHxzIsW8ygDAmRIp5lUGAM6USDGvMgBwpuYUKQzPBICzNatIkXYR6W63m18UECkA+ObmFSl2u/0tHHrjRHmPh4Fy51gGAM7Z/CIFAHCGRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACDA5UmzXy8VqM1pss1os19uDZqn+XilvttttVukFB+drs6rVs10vFxWfXyQAuFBHihTJiWKzWvSFge16uVgu00JFcqToL7pZLRpWm9rSbtdLkQIAeoxGisZxepfleptUrminW3X3tfCrzS4xLfQWSputctJ9bMi6K0QKAEiTFCmaMaDxe7OhbZw86JPFgM4wsFlVTzJs18uxPo+hSDEyaXWB9p0r+asiBQCkCY8UA90CzWqW621HGNiul0We2P+tPqqifY5i5A17J+icpcpiGUsBAGliI0XWAnd2F9S6Lio5ohYpNqtau12PGwPDLqaMpeiprOygKFJEeTpHLwUAjAuMFNlfBnoQ8snq5zH2YaAdC9qv9J0DmRQpEguLEACQLmx4ZtEL0TeQYv96d+gYHKI5Kv0yjr5FWE89mQIAVISPpRjvpagbig2fjxTdRcc7HzarxXK1Wi5XKz0VAJAi/L4U470UrdfnFCnyRLTaNEZo1icpcpMuCwDInSpS9E42l0hRyRL7WW4OPF3U7n8VcodQALgMx44UlaEY0w/pQyPF/oxMYg4YGJ6plwIAGjw2DAAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQICESPH24/766vH5T+Pl33dX99dX99c/fvdO+efXomNCAODyjEeKf88399dXP9/qr/59erzOIkXrT7k/vxbDBQCAyzESKYquiOLf4unfbrfbvf68vrq/vvn1lgWLvo6KIlXkUwEAF2u0l+L1ZzUT/P3zrwgK2RmNrA+jN1UUnRlOfwDAZUuMFDeP11f3d6+/n28er+v9Fvt/N7/+dkw/kjkAgIswFin+Pj1eXz3e/cgixe7v02N3OHj9mRVoe/thRAUAXLyxSPH24/766ufzUx4p8lEUxb+7p1+Lq8fn11+L3n6I/WgMIyoA4HKlDM8shmGWkWL/w2ikqEUQHRUAcKmmXfHx+Pw0KVLkAynuXssfjrQYAMDXSrt75t/DTnzkhX++7fbXnXYN4QQAzt1BkSKtlyLv4Sh7JrJxmkZUAMAlOlqkyC/0qHZL1G5oAQBckoPGUoyf+Kie8qjI73zl9AcAXJpP9lJkJzX+1CNFMd6iazCmO18BwEUKjxRDeSKT8AhTAODMHBYpfvwsntxR9DrkIySaQzK7FY8Tc00pAFyKtEgBADBIpAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAiQEim26+Vyva2/tlktFovVpq/8ojXBeJnNanSqcdv1crHa5PPX1DG/IW/aPRudq6dcl5tV9vfm/w96r75F2K6XHauhonPCg9dJsfLHCmVlmpuonLKopizZUcVyva3M5rS1Wi2dvlYAGJEQKdLHvGwAACAASURBVNoNRfbKUAOyWfUGjqKCZnvS2r8f0MKOvG3nBEdoP7br5WK57AkVeTO3WWXLnBdpNp/9rd3/6/nLp1de5a371slwG1xtv7tKFn/Mt1LtfcqVslxv9x+snlkpMkH1E5i0VuuTjwQOAKYZiRSNliE/dix3uSMHyMO9GLX2YrteZiHl4N15b8dAR7GjtsllrukIOJ3vvtq0Xq+shc1q5LD5823gAeukPVdF851txHUjDNQ/DptVWST/Q3ek6AmJzSVOX6ub6iurlV4KgEDjvRS1Q7nWwedytepp0HpPjdQOIvNpN6uikgNPAJSTTWhgDz/XMFhnPSh1tk/Zamw0sY0+/O4a91MPObxNTF0nzbmqns5Yrret/oUyJuzfYJMSKXa77XY7vMSNnpHxtaqXAuAoRiNFpSu5r7np7J7erBbLZW+nw1ireGhTnx3U9h9111v74DffrpeVcwD7iFOvcbNaLLJj9GKGtuvVctkbqQ7tpUjtejhsnTTmqjJl/zCF/QpZrrejkaKosmPZOnrApqzVzkiRNA4EgAFjkaIeJioNRXVf3N7r5+1G4n66XkU50dRGcaBPoPP8w8BIh8nvnjdplaEBzb6dxrmQ7H3yN1ltim6adjxrNN7jXRSN7dNc7r7tkbJOeueqVa63l2L/x5Reip641JihiWs1/3MZQPo/UQBMMBIpau3qcr1eVQ/vyv135/UggwPs4nspNvvj044/VevLWqyBOZj85u0T/u1Xqnmno2XP12LH6hrupchHJQw1gfX+/1rbW5u7Seuk83RMPfkMjKWoFNkv+ECkaMS71arrU5WyVosl1EsBEC/tvhTdvRR9kaJjKF47cjROxH/ysLA/3ewazWdlUVKPyA+bn75xJD0HxMVVIp3xrGft1PpzqldmVt66tjHqjXVZ7QHrpGMsxaLx2eiPJWWA2Q/STeml2P/S2NAT12rlgpHungrRAuAQyZEiPzoc76VoNYHt8xEp5xQO2a2ndZPXFinqrTtq766m4wxAZZqO2e95OVuH9anb89449m7li+Rxn0knPup/7+2l6L+ioy9SbFaNa43K6ivdGMlrtainGCbUWgkiBcAhki8iTeul6LmSc7iFbV01cmivxcRI8QW9FLvtZrOtJKr2tTStqTraxPylzmspG0fv7SzXGITQKP+psRSVEZUDkaLy42aVX8o5UHa5LJaqurxF/flncNJarZ0OGYgUvZsEgC5TT3x0noSunqju2f+2mrvqYXblsPFTPQUBkSLolHp/htpV+3zyFbAf29leTV3DM2uH8I1BJEXLutp0rI320nWeFGroWifNSLFfhPL3nphQ/FRd1HqHSSNztBatPLOy2rQDQMJa3a6X2R0qVpuBS1O2+wIGawKkmB4pspPPtUFzxa55ZNebR472QMqoWwHU6xkOKB3jEz+TZtq194+lGO5a6L1wpam8riFtdhbNtd5ZLGCdDJ3WyiJQ103N8nGm9ferjHpoz/1++dPXanGrq9W6ciGpXgqAEGmRAgBgkEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIEBKpOi4uWX347xTTL4Ldt/D04du/R11L86Dn17We6/n4Qp7VuJ+mvqa6ry/duDdo3vXQMpz3/qn7J7DnjrrN1l1I0uA+TowUow/C2PwKRftN+gt2/5b9srQNAPv3Zd8Ohdwuex9CFr/5CkLPlxD+2EbHU8xb/7SOd2nDKyBDunbe6Bk/eketUJTPk8AfIVJkaK3J6LnmdxDMSHlELfxfo0HXA89GiTh6V+DDyUp5z6hJatUdGDHRsczuLpSVPOHjnUzulkmzVPqGtj1Fkvrzqg+06MjUnQ8Sw2A+RmJFLUmofI06UJ/R/tYS1Ttxa4GgEZOaD4ps9FmNh+LXnv78W6U/mnrz8UcaM8qKaKc12mPQWvmkEYzXDygrRUp9m9RPomr8dCvg5vhpDXQfkjb4PpOmZ+OSKF3AuBcHHDio/x1sCtgs1pk3ebjPQGVijarxWK13lYbqtUma136OvU7U81mtVguh8dUdEeKyhFxff56lrSjxcte6j8+b7xps4bq8lQfBD4cKdpLe2ikSF4DEyNFyjCPgRMffa8BMBcTIsXIQ6sbExUtdtaz0Nse1xrK1vi7epjoelp5Z8OZH1YPn/1oR4rGM7LrjWRnt0f7+L2vT6OvNWyW7x4skdJL0XyTrAlPPfNQdkGlr4HeR8l3fyR6zpoVxfpndB9qnPwAmLPESFGPBakjEGsnwxMaj2ZT0jjtsl6VB89l0Oi7HqTs9BjsJBk8ym6/0mzWOjoYuhrT3a43UjRq2I88LdJYoxtncCxFfQ4nH9JPXQPTeim68l3rtZ5eivGzWAB8vZFIURxa7vsbho4km1MmDdkvG8ehcygdvRR9kaLeTg0P9hg87E1pJNvDPnrON3Q28O0aluvtbrfdFp0L1RSW0EtRlO0Y9HKQ4TUwKVJ0djJ0RYqiULUHq3oiSLIAmKupYyla7Uhfq5zSk1Gcts+alt42Po8Sq1VCL0Wrkt4O889Gip4/T4gUQ2/QHiCZGimG3nGiuEjR/dfWx6cyz+3ZN1ATYN6mRYp9d3vWpk9uRGp/bh+EN06R7Lsl0nopeoZR9rZnn4gUvUklOVIMDA7o7+hPjxQJl9GOiooUfau6GSkaJzuaV8E0hnU4GQIwLwfd6qpyIj/heo6uv/SeQq/U32pdNrVeiua8DZ1w77qzwWcixcAlIImRoreGxgjJjjceGktRq+fToxlDIkX/dmlMUp/j/QprVVCshIhFBCBM4n0psv6AjhxR71aomNJNPXJEXY0U61UxA7UxGKP54IAxfod1tPdeB5FUVV8rWVn5ZXdORy9FLWh8/hC+/9xO/6iaqmxztc5Ddc5id49FT1eOXgqAGUrppQAAGCFSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAiQFikGbkDdWba4oWVL702sh2/83H7odsfdtVP0Pgq15+3H6h16emrf3TzHbz6ZcvvqjkpbT0kffOvVunc+6vdK7ed22ADsJT7jI7ltOegu1oORojNRDL5F5e89T9xoVL9cpiem/lpSG+DGPDXCR/+6GHjOWGOyrrmpPch0fLX0zk/E48gAuESjkaLriVtDRVOam4QGOHvHrodjtSZuzdyESFEmoOgnZw/3UqREiuR+gnpPSvEYlMZzO/fPACkf4rrr7IRpzrVIAUCakUiRt0YDzVvZBFWfXZXQMzDUTJU1tB+ONVQ0pf1tLlz9yeif6ckfOUeyn+nEEx9Jq7EsUUsiy/W2WLZ6zMtK1R7y2Xyol0gBwGHSxlLsm556i9LRBGUhpL/ZLNq5gyLFctls9muRonYo3pjBxqxWOl/qB/HDpw+Gw0LnGmtJ76WonCqpzWJ7kYo803yYZ2P2tuvlYrXav6FeCgDCJEWKSqu33W43tSap9ejqrpa0MfrhE70UzcrKOahFinbXSav97Rv+0fkM9EZKaf09cXRoZy/O4FiKTfks9+bsLOrhZ7nMT2lUT4XkvRW1YRx5p9NwB8iEx5cboAlAJuHER2rTkpcNjhQdbXI1uVRPt1THIOw7IBoNeXvQRPuVVjIaixTVcrU/NtLLvtBo9Gh3MbTkJze26+VyvSnmqusdy/VQuRqnjBvdb9/eFh2rAgD2UnopqsfR9WPqSlTIfuw5/u2IFAkZpaeXoqiiSAj1SJHNYKWZrTa8nYfUCSMzq0vd16Z2LlR1LGTPyhjqpRhcUftOl0pYKBaoOya0IsVqs10vq/04m+bSdXVEiRQAtCVEitoowO22egjfai7TI8XhJz66ay5HHlZPb1Qay9Xq8EhRa1ZbZyYq1VZ7SPa/1w/9m6toykWk/ecZGpGiJ8Ts5yfvVtqfScpnY3TohEgBQLeESJFw8qO3vdxXMdQM9TZTo5GiPiizMiet4ZGH91I0/t7qRmi21rUVs973C+yvshjqBjh6pKjFodWqvnGXq1Vj+G3XaZvG/BUfEEkD4Fv73A25D+ylaBqKFN3RpVJx56UonVUdECk6RibU3qj+/tU5rGWIRW0YSKu9j48UIyc+OmaxvRo7B6r2d1sMXOMCwHdwSKSoNFkd1yLUh1r0hoHGVFN6KWpBY2zU5Pg89EWK7ia1mXPKIaGtCzO7gkJHLKiccajNZ9rI2K7Fn9JLUYkU6+qFqL05Sy8FAN0+10sBALDb7UQKACCESAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAiQECneftxfXz0+/2m8/Pvu6v766v76x+/hyf8+PV5f3V/f/Pp78EwCAHM3Hin+Pd/cX1/9fKu/mgeFq44/7TpLihQAcMlGIkXRFVH8Wzz92+12u9efWUp4y+JCvaPi7UelZDtS/Pm1SAgiAMBZGe2leP1Zywd//hWZIDsVkvVh1FKFSAEA309ipLh5vL66v3v9/XzzeF3vt9j/K0KDSAEA389YpPj79Hh99Xj3I4sUu79Pj93jMV9/ZgV2IgUAfEdjkeLtx/311c/npzxS5KMoin93T78WV4/Pr78WlXMfWaQY+ydSAMAlSRmeWQzDLCPF/oeuSNHgig8A+AamXfHx+PwkUgAAbWl3z/ybfuIjL7A/r9GOFPmZkbF7ZAEA5+OgSDHUSyFSAMB3JFIAAAEOGkvhxAcAUPfJXorX3W5X3GpCpACA7+tYkSLhn0gBAJfjsEjx42d+HuRP8YyPjqef99JLAQAXJy1SAAAMEikAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACpEWK7Xq5WKw2aQVTyu226+Vyva2/tlktxt5ls1q0JqvXt1llVTT/31u6U8eb9L715/Su2mlL1JjD4sexme7aDMM1Dy5H08hHIfljtdus0gsOzmlj5TXm+rANHPvtOP4nOfazXCxU5wwkbTPgYqREis7WonO/Vd3rde1iyj+2d67ZK+3X63u/+m/10tmbb1aL1WY/H9v1smO31tptd/+1fz6ibNfLxXLZ1yJNWKLGytj/sllVmpW+dmekHUhZ9taWG20/h5e9NQepzVNf0fayrza1mUyMV01H+HYc95O8i/wwT9gwwOUbjRTb9TL16K3Y6W3Xy8VyvW7stsq9d2NvutrUd32N3WBapOg7Rm6+vlxvqq+sVgPHduNtRaMlmKzcH3fsmNOXqN4v0VwzrT8136XzT9OXfWqkGFr2gdKHzWg1auXLmzXBn40U8d+OY3ySW7qj5dQPcnonE/BNjESKfFc+sOOuRoHyuHi53rYasureu3ZI1dq/LVerZfXAOrGXoqyqVnVRvNZgTD226z3X8Am17oO8oWnv/ROXqLV336yyHoDmhhrvp2jOReKyT4oUacvemKAvUoxM2vjc5aXzVz8XKY707SiqPsYnuVXbwco3PLB3B7hAaWMpWrviXGVvUtmv9jde+ZSVLt2+Bqt8x7E2sN6VvFyvV+U8bNerZTl/tTfq3BH3tYEDLcahOaNycLtvLLtiQdoS5XOYnTeaNHtjzUH6sidHioRlTzs/kzJBc9xEsy8sZCxF8LfjeJ/kjjn+tGwb9n9OpA34TpIiRfUQabvtGAVYLdk+IszUTu9XwkRl59rRP90/J80qa5WXjexmVe5xGxNWd9v9u8Ks5MBIh91gu9tRZ95gbPe1NHtsGucDxpZou14ulqvVstV+do2JSFJLKsPL3v+GXXOQuOyd7zctv7Uqq62ucmMEjKUI/nYc65M88iE95JM82LfmhAh8RwknPpJ3MUPnKPrOFi/X61X1MKvcj9ZOee96Km00Wx2tWF7TfrpiiVKO7bJXBtbB5P1mu2lsv1LdT6ctUaMHv6h3rIHcrCqrv2nqsrca5M6zUlOWfbjk8HKlFP58h/0xvh2dv1Zm97BP8uh5qAMSwGZVefuICoGzl9JLUd39tXaMtf1Ytb0Z6tqtTlvvpTgwUnS8WfVAarls7cCLg9Tu47vVpjaDiUfqh+hr/6YvUbu9Hmoxawlv39WzqC9z+rK3XhntfZ8SFCaspZ5Gvf8ovv8jmiT423GMT3IxdWSkaH5RP10hcAESIkVtGOB2Wz2QHNp1pA1AW6xWMb0UteprxTar1qFUUX8xqKO3f7oyoyHtT1t/szp1iToa+Z7ps/atXl/30iQvezvAdA+LTFz2w0umjRPYrLJBwNWBwIeJ/3Yc55Mc30tRffuwCoGzlhApEo4EWwdjy/W2d6e5ry+ul2K33Wy2lSPBxhn6ZgtY60ROiBRf0EsxfYk6+7pb4wbzZqnZFlQGTTbmLmXZuxair5FMWfZPlByJFJX0VBuhORgsht49+ttxrE/yl0aKzlkHLk/aFR99qruOTX3oXUovRR4pOk8GN04YJ+ywK/0e+ZzsZ6nRYm7Xy+y6/vwEx0ClvTvchI79FION5aQl6qimvJCi7AKqtPJZG7SobLWiJaut0tFlr1+t0VWmr5U/ZaRo98TUmsOyEe94l0O39OHfjiN8kpOGZ06WFCm2+9n7ZJcQMHOHRIrKnqt/aF+f6nnnMlJkJ4H3x4yp+7h6z8fIYXd20F7cIGi1rlx+N6WXovMI8nCDowSSlqjRDdHQjgmVV0cXYHzZBxr70c9JaKTYv1tiu5U8PHPaQfwnvx3rI32ST9FLUe9wrL9B2BcGmLHP9VLAxTMwACCNSAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAVIixZ9fi6v765tff4sX/j49Xv/4Xfz27/nmvvJr8crVz7e0Ct9+3F9fPT7/aRT6fXd1f33VqLldT3tCAOD0DogU2a9X93evu91ut3v9eX1VzwR5+Z93N/fXV5V/ZTioVdidP/4+PRYT9kSTYjaGsgsAcCIH9VLkMeLm1988EBTxovLXxdO/oqehbPL/Pd/cX9/8+ruvsOiKKP4tnv5V63/LgkVfR0WRKvKpAIAvMxIp8sRQ/rt7KvsGWv9qJzLu717bWaQdKar5Y7fb7f7++VcEhazbo5iBnlRRdGY4/QEAXyuhlyJvtqu9FLvdrrN/YrcreiYen/9UOzMqk3RGipvH66v7u9ffzzeP3XmlYwZqszE05AIAOLqESJH1OqRGisrQisp4iOz0xO92pPj79Hh99Xj3I4sUjYGfzWpb8aUye0ZUAMBXGo0U5SjIpEhRnih5fP6TNfY/34p+js5IkZV5fsojRZFIqudZHp9ffy16+yH2ozGMqACArzMWKeo9DT/fWqMr6iMrywb+8fnP77taV8T93WvP8MxiGGYZKfY/jEaKWgTRUQEAX2UkUlSuyMga/sbAiI5eisfFzf311ePzU9HY//hdDNgcveIjnyo5UpTz0DewAwA4jZRIcfPYvIh0t+sbS/H2mgWIx7sfj2WYqPVwNIZn7na7fTfGxBMfeeGfb7v2UFAA4JTGLyItWvTUKz4ad8Ms+iHKm1gkRIq0Xoq85nIGsvhiRAUAfIWxsRRvr787bnW12yVHimpLHxkpOq5Dqd3QAgA4pWl3z+wdm1m95qIWKfJmPhs4mTqWYvzER/WUR0XPLTQAgGM77Ibcu11aL0VepnkyIr2X4rVSvowUxXiLrsGY7nwFAF/imJEiPzfRbt3/NHsdJkSKoTyRSXiEKQAQ7HiRIjuF0TkAojXioRkpfpS34KzdO6s9JHNohl1TCgCnkxIpAABGiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBgJFL8DwDgf//73//+99lI8R8A8O2JFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIcJpI8f6wyN2+fBx9mQCAkztFpHh/WDy8//fff//99/FyK1QAwCU68YkPmQIALtOJI8X7w6LosQAALshJI8X7g8EUAHCZThcpPl5uBQoAuFQnihTyBABctpNECic8AODSnSBS7G9KUTBAEwAujbtnAgABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAJ4sUHy+3kx4YNq38/tFkqU88Pff6AWBeTvhw85eH1CZ2YvnKs9M/Xm4TJjr3+gFgfk4QKT5ebh/e/8tazpTWcmr594fqof3Hy+3Ikf651w8Ac3TCsRSpTezE8tVi2dmGCZ0D51w/AMzJRUSK25ePvDHOfwpu8udZPwDMyUVEitqwxiM0+fOsHwDm5PwjRWNEY/pYhHOvHwDm5PwjRe2KiSlvcu71A8CcnCJS7G+6kBtpM6eW3w9rTBvZeO71A8AMuXsmABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAhwskiRPRkr/aFYygPAOTlJpMie3v2S/Nxu5QHg3JwgUny83D68/5c1nClNpvIAcH5OOJZiapOpPACcD5HibMsDwJyIFGdbHgDmRKQ42/IAMCcixdmWB4A5OUWkeH9Y1I00nMoLFgCcHXfPBAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABThYpPl5uJzwQa/8krduXjxnUP7f5AYC5OUmkeH9YLG5fXlIf3p0V//jvv7xhHp3oyPXPbX4AYIZOECk+Xm4f3v/LWs6U1vL9oXqo/vFyO3Lkfuz65zY/ADBHJxxLkdjEVotlZw8mHOwfof65zQ8AzNIsI8Xty0feuOY/BTfhk+qf2/wAwCzNMlLUhikeoQmfVP/c5gcAZml+kaIxQjF9bMGR6p/b/ADALM0vUtSugEif6Ij1z21+AGCGThEp9jddyI22mcUwxbSRiseuf37zAwCz4+6ZAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACDAySJF9mSs1Idi7Z+8lfqg7+PWP7f5AYC5OUmkyJ7e/XLAw74/Xm4TJjpy/XObHwCYoRNEio+X24f3/7KWM6W1fH+oHqp/vNyOHLkfu/65zQ8AzNEJx1IkNrHVYtnZgwkH+0eof27zAwCzNMtIcfvykTeu+U/BTfik+uc2PwAwS7OMFLVhikdowifVP7f5AYBZml+kaIxQTB9bcKT65zY/ADBL84sUtSsg0ic6Yv1zmx8AmKFTRIr9TRdyo21mMUwxbaTiseuf3/wAwOy4eyYAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACHCySJE9GSv9oVjKA8A5OUmkyJ7e/ZL83G7lAeDcnCBSfLzcPrz/lzWcKU2m8gBwfk44lmJqk6k8AJwPkeJsywPAnIgUZ1seAOZEpDjb8gAwJyLF2ZYHgDk5RaR4f1jUjTScygsWAJwdd88EAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFOFCn2T8a6ffk4Qvn//vt4uZ3wwK1j13/88gAwL6d6Emnecn+83I63m1PL5xO8pD4c/Nj1H708AMzPCSLF+0O1K+Dj5XakZ2Bq+Y+X24f3bLqkJvnY9R+7PADM0fEjRbWlzHr3h1vOqeU7Jwycn6n1n6w8AMzJSSLF7ctH3njnP41EiknlqxMmRoqj1n+y8gAwJ6fppagOg0yIFJPK1yZM7KU4Zv0nKw8Ac3L8SNEYATk6dmFq+VJik3zs+k9WHgDm5MRXfCS1m1PLVyabesXHUeo/UXkAmJPT3JeiGAaZOhJyWvn9TSZSpzlu/ccuDwAz5O6ZAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACDAiSLF/slYaQ8SL57slf4Are9WHgDm5cQPN/94uU1oN7MJXpIf9v3dygPA/JwgUrw/VLsmPl5uR3oqPl5uH96z6ZKa2O9WHgDm6PiRotpSZr37iS3n1Cb2u5UHgDk5SaS4ffnIw0T+k0gRUB4A5uQ0vRTVYZkiRVB5AJiT40eKxojM8bEUhbk14XMrDwBzcuIrPqa0m3NrwudWHgDm5DT3pSiGZaaNzNzfxCJtmu9WHgBmyN0zAYAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACeKFO8Pi9zty0fSjH283C4Wi4f3tMU49/qnlweAeTlFpHh/KFvij5fbhHYzm+DlIbGJPff6J5cHgPk5QaR4f6ge2n+83I4c6X+83D68Z9MlNbHnXv/U8gAwR8ePFNWWMuvdn9A5kFDw3Os/uDwAzMlJIsXty0feGOc/BTf5Z13/weUBYE5O00tRHdZ4hCb/rOs/uDwAzMnxI0VjROP4WIRCYhN77vUfXB4A5uTEV3xMaTeTi557/QeWB4A5Oc19KYphjWkjG/c3gUid5rzrnz4/ADA77p4JAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKcLFJkT95KfyCW8gBwTk4SKbKng78kP7xbeQA48FbpigAACiBJREFUNyeIFB8vtw/v/2UNZ0qTqTwAnJ8TjqWY2mQqDwDnQ6Q42/IAMCcixdmWB4A5ESnOtjwAzIlIcbblAWBOThEp3h8WdSMNp/KCBQBnx90zAYAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAECAE0WK/ZOxbl8+kmbs4+V20gO0jlt+fvMPAPNyqieR5i3xx8ttQruZTfCS/LDvI5ef3fwDwPycIFK8P1QP7T9ebkeO9D9ebh/es+mSmthjl5/b/APAHB0/UlRbyqx3f0LnwJQm9kjlZzv/ADAnJ4kUty8feWOc/zSLJjk9Usxz/gFgTk7TS1Ed1jibJnlCL8Us5x8A5uT4kaIxonF8LEJhJpFitvMPAHNy4is+prSbM4kUs51/AJiT09yXohjWmDaycX8TiLRpjl1+bvMPADPk7pkAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIMDJIkX25K3UB2Ltn6SV9iDxqfWf+/wAwNycJFJkTwd/OeBh4h8vtwkTTaz/3OcHAGboBJHi4+X24f2/rOFMaTLfH6pdAR8vtyM9A1PrP/f5AYA5OuFYisQms1osOxswoTNhSpN8pvMDALM0y0hx+/KRN975T18cKWY1PwAwS7OMFLVhkF/dhM9tfgBgluYXKRojIMfHLkys/9znBwBmaX6RonaFxZR29mhN+NzmBwBm6BSRYn9Th9xow1kMg0wbCTm1/vOfHwCYHXfPBAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABThYpsidvpT8Qa1r5/ZO30h88Pqfy09cPAMzLSSJF9nTwl+SHd08sX3n4+MfL7fhEcys/ef0AwPycIFJ8vNw+vP+XNZwpTebU8u8P1a6Aj5fbkZ6BuZWfurwAMEcnHEsxtclMLF8tlp09GJ5sbuU7JwSAc3MRkeL25SNvvPOfRpr8WZWvTihSAHC2LiJS1IZBJjT5sypfm1CkAOBcnX+kaIyAHB27MLfyJZECgHN2/pGidoVF0kRzK1+ZTKQA4FydIlLsb9KQG2k4p5bfD4NMHQk5r/LTlxcAZsfdMwGAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAgJNFiuxJWukPxFIeAM7JSSJF9rTvl+SHdysPAOfmBJHi4+X24f2/rOFMaTKVB4Dzc8KxFFObTOUB4HyIFGdbHgDmRKQ42/IAMCcixdmWB4A5ESnOtjwAzMkpIsX7w6JupOFUXrAA4Oy4eyYAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACHCiSLF/Mtbty0fSjH283E54gNbU+uc2P1PrB4C5OdWTSPOW9ePlNqHdzCZ4SX3Y99T65zY/U+sHgBk6QaR4f6geqn+83I4cuX+83D68Z9MlNbFT65/b/EytHwDm6PiRotpSZr37Ew72EwpOrX9u8zO1fgCYpZNEituXj7xxzX8KbsIn1T+3+ZlaPwDM0ml6KarDFI/QhE+qf27zM7V+AJil40eKxgjF8bEFhcQmdmr9c5ufqfUDwCyd+IqPKe1mctGp9c9tfqbWDwAzdJr7UhTDFNNGKu5v6pA6zbT65zY/0+sHgNlx90wAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAAZECAOB/n4wUAAApRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACmR4s+vxdX99c2vv8ULf58er3/8Ln7793xzX/m1eOXq51tahW8/7q+vHp//NAr9vru6v75q1Nzh79PjdX32AICTOyBSZL9e3d+97na73e715/VVPRPk5X/e3dxfX1X+leGgVmF3/siDwtVgNKmWFCkA4Csd1EuRx4ibX3/zQFDEi8pfF0//ip6GMhP8e765v7759XdfYdEVUfxbPP2r1v+WxYV6R8Xbj0rJdqTIE89IEAEAQo1EijwxlP/unvIuio5/tRMZ93ev7SzSjhTV/LHb7XZ///wrMkHW7VHMQCVViBQAMD8JvRQ9Zxa6+id2u6Jn4vH5T7UzozJJZ6S4eby+ur97/f1889idV1qRRaQAgDlJiBRZE54aKSpDKyrjIbIQ8LsdKf4+PV5fPd79yCJFY+Bns9rsvUQKAJif0UhRDMZMixTliZLH5z9Z2//zrWj1OyNFVub5KY8URSKpnmd5fH79taic+8gjzsg/kQIATmksUtR7Gn6+tUZX1EdWlsMtH5///L6rdUXc3732DM8shmGWkWL/Q1ek6J5DV3wAwFcaiRSVKzKyhr8xMKKjl+JxcXN/ffX4/FT0N/z4XQzYHL3iI59KpACAc5MSKW4emxeR7nZ9YyneXrMA8Xj347EME7UejsbwzN1ut+/GSDjxkRfYn9doR4r8TcfukQUAxBm/iLRo0VOv+GjcDbPohyhvYpEQKYZ6KUQKAJijsbEUb6+/O251tdslR4rqBRoiBQBcqml3z+wdm1kZoVmPFLVLOlPHUjjxAQDn5rAbcu92ab0UeZnyHhJ9Ffb2UrxWyosUADBfx4wUvU37n+YVHNMjRcI/kQIATud4kSI7hdH1xK/yXlilZqT4Ud6Cs3bvrER6KQDg5FIiBQDACJECAAggUgAAAUQKACCASAEABBApAIAAIgUAEGAkUvwPAOB///vf//732UjxHwDw7YkUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQQKQAAAKIFABAAJECAAhwwkjx8XK7WCxuXz6OuTwAwJc4WaT4eLldPDw8iBQAcJFOFCk+Xm4Xty8f7yIFAFymk0SKPFD8959IAQAX6hSRYh8kRAoAuFDHjxTVGCFSAMCFOnqkeH9YtD28n2bpAIATOe19KfRSAMCFEikAgADungkABBApAIAAIgUAEECkAAACiBQAQACRAgAIIFIAAAFECgAggEgBAAQQKQCAACIFABBApAAAApwiUny83FafbO7BYQBweU4UKcQIALhsIgUAEECkAAACnHwshXABAJfo1Fd8vD9IFQBwgU5+Een7w2Lx8H6chQEAvsqJI8XHy61EAQAX6ASRwlAKALh87p4JAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAEECkAgAAiBQAQICBSAAD875ORAgAghUgBAAQQKQCAACIFABBApAAAAogUAEAAkQIACCBSAAABRAoAIIBIAQAE+P+hcrhuZlHHMgAAAABJRU5ErkJggg==" alt="" />
------------------------------------
这道题有坑,题目描述含糊不清,出题人水平不太行啊....
组成十字架的必须是1,并且是5个,不算大的十字架之类的。
AC代码如下:
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int times=sc.nextInt();
while(times-->0){
matrix=new int[w][w];
for(int i=0;i<w;i++){
for(int j=0;j<w;j++){
matrix[i][j]=sc.nextInt();
}
} System.out.println(dfs());
} } private static int matrix[][],w=7; private static int dfs(){
int ans=0;
for(int i=1;i<w;i++){
for(int j=1;j<w;j++){
if(isCross(i,j)) ans++;
}
}
return ans;
} private static boolean isCross(int x,int y){
if(x<1 || x>=w-1 || y<1 || y>=w-1) return false;
if(matrix[x][y]!=1) return false;
return 1==matrix[x-1][y] && 1==matrix[x+1][y] && 1==matrix[x][y-1] && 1==matrix[x][y+1];
} }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=893
NYOJ题目893十字架的更多相关文章
- nyoj 题目2 括号配对问题
描述 今天发现了nyoj,如获至宝.准备开刷. 括号配对问题 现在,有一行括号序列,请你检查这行括号是否配对. 输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的 ...
- NYOJ题目27水池数目
--------------------------------------------- 这道题有点坑,也怪我总是有点马虎,按照正常人的思维0是表示有水池啊竟然是1表示有水池,最坑的是写反了竟然还能 ...
- NYOJ题目20吝啬的国度
-----------------------------------------n-1条边的无向连通图是一棵树,又因为树上两点之间的路径是唯一的,所以解是唯一的.(注意并不一定是二叉树,所以最好采用 ...
- NYOJ题目28大数阶乘
-------------------------------------祭出BigInteger AC代码: import java.math.BigInteger; import java.uti ...
- NYOJ题目198数数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAK1CAIAAABEvL+NAAAgAElEQVR4nO3drXLkurvv8X0T4bmQYF
- NYOJ题目170网络的可靠性
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAs8AAANvCAIAAACte6C6AAAgAElEQVR4nOydPbLcNhOu7yaUayGOZy
- NYOJ题目168房间安排
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAOTCAIAAADGwNmiAAAgAElEQVR4nOy9PY7cyLPufTchXwsZu9
- NYOJ题目125盗梦空间
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAANLCAIAAAA4rUfgAAAgAElEQVR4nOydq7LdyrKm+yXM/SDG4y
- NYOJ题目124中位数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAJUCAIAAABsWvwaAAAgAElEQVR4nO3dPXLjuraG4TsJ5xqIYw
随机推荐
- python os.path.dirname 是什么目录
这个获取文件路径中所在的目录. 1 2 3 4 5 6 7 In [1]: import os In [2]: os.__file__ Out[2]: '/usr/lib/python2.7/os ...
- php curl 实例+详解
直接上实例 <?php //创建一个新cURL资源 $ch = curl_init(); //用于中文等特殊字符的url转码 $aurl = urlencode($address); $url= ...
- Python自动化之select解析
select原理 网络通信被Unix系统抽象为文件的读写,通常是一个设备,由设备驱动程序提供,驱动可以知道自身的数据是否可用.支持阻塞操作的设备驱动通常会实现一组自身的等待队列,如读/写等待队列用于支 ...
- 1.5---字符串压缩(CC150)
import java.util.*; public class Zipper { public String zipString(String str) { // write code here i ...
- python编码问题(2)
先上代码: # -*- coding: utf-8 -*- import sys import urllib2 import re import chardet import sys print sy ...
- iOS_隐藏顶部状态栏方式
关键词:IOS.UIViewController. Status Bar iOS6和iOS7在隐藏 Status Bar 三种方式比较: Storyboard 界面上选中UIViewControlle ...
- VirtualBox中安装Ubuntu12.04/Ubuntu14.04虚拟机
NOTE: 一开始安装的Ubuntu12.04,后来又重新安装了14.04.截图基本使用了安装12.04时的截图,后来安装14.04时又补充了几张.该安装过程对Ubuntu12.04和14.04都是适 ...
- Increasing Triplet Subsequence
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...
- POJ 2421(prim)
http://poj.org/problem?id=2421 这个题和poj1258是一样的,只要在1258的基础上那么几行代码,就可以A,水. 题意:还是n连通问题,和1258不同的就是这个还有几条 ...
- 在Py文件中引入django环境
复制manage.py中的相关代码即可并将文件置于Project文件夹(与manage.py同位置)下 示例: #! /usr/bin/env python # -*- coding:utf- -*- ...