#分治,决策单调性dp#CF868F Yet Another Minimization Problem
题目
给定一个序列 \(a\),要把它分成 \(k\) 个子段。(\(n\leq 10^5,k\leq 20\))
每个子段的费用是其中相同元素的对数。求所有子段的费用之和的最小值。
分析
有一个很明显的\(dp\)就是设\(dp[i][k]\)表示前\(i\)个数分成\(k\)段的费用之和最小值,
那么\(dp[i][k]=\min\{dp[j][k-1]+calc(j+1,i)\}\)
可以发现\(dp[i][k]\)不会因为\(dp[i'][k]\)而改变,用分治解决
并且无法在\(O(1)\)时间内求出来,并且应该是具有决策单调性的,
考虑calc函数用类似于莫队的方法求解,那么就可以做到\(O(knlog_2n)\)
代码
#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
typedef long long lll;
const int N=100011;
lll dp[N],f[N],now;
int a[N],cnt[N],n,m,Le=1,Ri;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline lll answ(int l,int r){
while (Le<l) now-=--cnt[a[Le++]];
while (Le>l) now+=cnt[a[--Le]]++;
while (Ri<r) now+=cnt[a[++Ri]]++;
while (Ri>r) now-=--cnt[a[Ri--]];
return now;
}
inline void dfs(int l,int r,int L,int R){
if (l>r) return;
rr int mid=(l+r)>>1,MID=L;
rr lll ans=1ll<<60;
for (rr int j=L;j<mid&&j<=R;++j){
rr lll t=answ(j+1,mid);
if (f[j]+t<ans) ans=f[j]+t,MID=j;
}
dp[mid]=ans;
dfs(l,mid-1,L,MID),dfs(mid+1,r,MID,R);
}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=n;++i) a[i]=iut();
for (rr int i=1;i<=n;++i) dp[i]=answ(1,i);
for (rr int i=2;i<=m;++i)
memcpy(f,dp,sizeof(dp)),dfs(1,n,1,n);
return !printf("%lld",dp[n]);
}
#分治,决策单调性dp#CF868F Yet Another Minimization Problem的更多相关文章
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...
- [BZOJ2739]最远点(DP+分治+决策单调性)
根据旋转卡壳,当逆时针遍历点时,相应的最远点也逆时针转动,满足决策单调性.于是倍长成链,分治优化DP即可,复杂度O(n^2). #include<cstdio> #include<a ...
- CF868F Yet Another Minimization Problem(决策单调性)
题目描述:给定一个序列,要把它分成k个子序列.每个子序列的费用是其中相同元素的对数.求所有子序列的费用之和的最小值. 输入格式:第一行输入n(序列长度)和k(需分子序列段数).下一行有n个数,序列的每 ...
- bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】
参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...
- BZOJ4426 :最大生产率(贪心+决策单调性DP)
题意:给出N个人,现在让你分P组,每组的工作效率是最小结束时间-最大开始时间,要求每一组的效率的正数,求最大效率和.N<1000 思路: 把包含至少一个其他的分到A组:否则到B组. A组的要么单 ...
- bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)
每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...
- CF321E Ciel and Gondolas 【决策单调性dp】
题目链接 CF321E 题解 题意:将\(n\)个人分成\(K\)段,每段的人两两之间产生代价,求最小代价和 容易设\(f[k][i]\)表示前\(i\)个人分成\(k\)段的最小代价和 设\(val ...
- BZOJ2739 最远点(分治 + 决策单调性)
2739: 最远点 Time Limit: 20 Sec Memory Limit: 256 MB Description 给你一个N个点的凸多边形,求离每一个点最远的点. Input 本题有多组数据 ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
随机推荐
- 【libGDX】加载G3DJ模型
1 前言 libGDX 提供了自己的 3D 格式模型文件,称为 G3D,包含 g3dj(Json 格式)和 g3db(Binary 格式)文件,官方介绍见 → importing-blender- ...
- CoaXPress 协议的CRC及其具体实现
CoaXPress CRC 在CXP协议中,CRC用在stream packet和control packet中,用于指示数据是否错误,如果是control packet, device发现CRC错误 ...
- 【Azure Developer】使用 Microsoft Graph API查看用户状态和登录记录
问题描述 通过Microsoft Graph的API如何来查看用户信息和登录记录呢? 问题解答 第一步:需要一个授权Token 比如一个拥有查看用户权限的Azure账号,通过Azure CLI 命令获 ...
- 【Azure Redis】Redis导入备份文件(RDB)失败的原因
问题描述 在测试Azure Redis的导入/导出备份文件的功能中,突然发现在Redis 4.0上导入的时候,一直报错. 问题解答 因为门户上只是显示导入失败,没有任何错误消息说明.根据常理推断,Re ...
- 【Azure 微服务】Service Fabric 部署时遇见了VMExtensionProvisioningError错误: Multiple VM extensions failed to be provisioned on the VM
问题描述 Deployment Azure Service Fabric 时,遇见了VMExtensionProvisioningError, 全文如下: Deployment Name: 385A ...
- C/C++、C#、JAVA(三):字符串操作
C/C++.C#.JAVA(三):字符串操作 目录 C/C++.C#.JAVA(三):字符串操作 定义字符串 C C++ C# JAVA 捕捉输入和输出 等值比较 C/C++ C# JAVA 字符串操 ...
- 为什么HashMap的键值可以为null,而ConcurrentHashMap不行?
写在开头 昨天在写<HashMap很美好,但线程不安全怎么办?ConcurrentHashMap告诉你答案!>这篇文章的时候,漏了一个知识点,知道晚上吃饭的时候才凸显想到,关于Concur ...
- 批量删除mysql库中数据
-- 查询构建批量删除表语句(根据数据库名称) select concat('delete from ', TABLE_NAME, ' where org_id = "<条件id> ...
- jenkins 钉钉机器人插件
官方文档: https://jenkinsci.github.io/dingtalk-plugin/guide/getting-started.html#%E6%B3%A8%E6%84%8F 注意:系 ...
- 全面解析 Redis 持久化:RDB、AOF与混合持久化
前言: 每次你在游戏中看到玩家排行榜,或者在音乐应用中浏览热门歌单,有没有想过这个排行榜是如何做到实时更新的?当然,依靠 Redis 即可做到. 在技术领域,我们经常听到「键值存储」 这个词.但在 R ...